+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Effects of Anesthesia on Plasma and Kidney ANG II Levels in Normotensive and ANG II-Dependent Hypertensive Rats

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Previous studies have implicated that normotensive rats with normal renal renin activity respond to anesthesia and surgery with greater increases in plasma and kidney angiotensin II (ANG II) concentrations than ANG II-dependent hypertensive rats with intrarenal renin depletion. In the present study, we therefore compared plasma and kidney ANG II levels in anesthetized and conscious normotensive and ANG II-dependent hypertensive rats. Methods: Salt-replete Hannover-Sprague-Dawley rats (HanSD) served as controls. As models of ANG II-dependent hypertension we used: 1st, transgenic rats harboring the Ren-2 renin gene (TGR); 2nd, two-kidney, one-clip (2K1C) Goldblatt hypertensive rats, and, 3rd, ANG II-infused hypertensive rats. As additional model with enhanced renin-angiotensin system (RAS) activity, salt-depleted HanSD and TGR were employed. Results: In anesthetized salt-repleted HanSD, plasma and kidney ANG II levels were higher than in salt-repleted TGR, ANG II-infused and 2K1C rats. Salt depletion caused marked increases in ANG II levels in HanSD but did not alter them in TGR. In contrast, in conscious animals immediately after decapitation plasma and kidney ANG II levels were similar in salt-repleted and salt-depleted TGR, in ANG II-infused rats, in the clipped kidney of 2K1C rats and in salt-depleted HanSD and in all these groups they were significantly higher than in salt-repleted HanSD. Conclusions: These findings indicate that anesthesia increases plasma and kidney ANG II levels in HanSD to a greater degree than in ANG II-dependent models of hypertension. Therefore, the results from studies employing anesthetized animals must be interpreted with caution.

          Related collections

          Most cited references 14

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of diethyl ether, halothane, ketamine and urethane on sympathetic activity in the rat.

          The present paper describes the effects of different general anaesthetics on plasma catecholamine (CA) concentrations taken as biochemical index of peripheral sympathetic activity. In chronically catheterized rats, diethyl ether, ketamine and urethane increased plasma adrenaline (A) and noradrenaline (NA) concentrations, indicating that these drugs stimulate both neurosympathetic and adrenomedullary functions. These effects appear to be centrally mediated, since ganglionic blockade or spinal transection completely counteracted the diethyl ether- and ketamine-induced increases in plasma CA levels. Halothane induced a transient decrease in circulating A and an increase in NA. These results support the concept that general anaesthetics may have different effects on sympathetic function. Arterial blood pressure and heart rate were also measured to look for possible correlations with peripheral sympathetic activity. The enhanced release of peripheral CAs seemed to be the determining factor for increasing blood pressure and heart rate with ketamine only. In the other instances the activation of the peripheral sympathetic system appeared to maintain homeostasis by counterbalancing the various depressive effects of anaesthetics on the cardiovascular system.
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of angiotensin-(1-7) blockade on renal function in rats with enhanced intrarenal Ang II activity.

            Increasing evidence suggests that angiotensin-(1-7) [Ang-(1-7)] acts as an endogenous antagonist of Ang II when the renin-angiotensin system (RAS) is activated. In the present study, we therefore compared the effects of acute intrarenal (i.r.) Ang-(1-7) receptor blockade on renal function under conditions of normal and increased intrarenal Ang II concentration. Salt-replete Hannover-Sprague Dawley rats (HanSD) served as control animals. As models with enhanced action of Ang II we first used transgenic rats harboring the Ren-2 renin gene (TGR), second, Ang II-infused rats, third, 2-kidney, 1-clip (2K1C) hypertensive rats on normal salt intake, and fourth, salt-depleted TGR and HanSD. I.r. Ang-(1-7) receptor blockade elicited significant decreases in glomerular filtration rate (GFR), renal plasma flow (RPF), and sodium excretion in 2K1C rats, and in salt-depleted TGR and HanSD. In contrast, i.r. Ang-(1-7) receptor blockade did not significantly change GFR, RPF, and sodium excretion in salt-replete TGR and HanSD, or in Ang II-infused rats. These findings suggest that under conditions of normal intrarenal RAS activity and increased intrarenal Ang II action by infusion of Ang II or by insertion of a renin gene in salt-replete conditions, Ang-(1-7) is not an important factor in the regulation of renal function. In contrast, under conditions of endogenous RAS activation due to clipping of the renal artery or to sodium restriction, Ang-(1-7) serves as opponent of the vasoconstrictor actions of Ang II.
              • Record: found
              • Abstract: found
              • Article: not found

              Intrarenal angiotensin II augmentation in angiotensin II dependent hypertension.

              In several models of angiotensin II (ANG II) dependent hypertension, intrarenal ANG II levels increase to a much greater extent than the circulating levels even though the renal renin levels are decreased. The 2-kidney-1-clip (2K1C) Goldblatt rat model is particularly intriguing because hypertension develops in the presence of an intact kidney which would be expected to maintain sodium balance and protect against hypertension. Although the non-clipped kidney becomes renin depleted, it exhibits enhanced microvascular reactivity and increased tubular fractional sodium reabsorption. The non-clipped kidney ANG II content is either elevated or unchanged and proximal tubular fluid ANG II concentrations are not suppressed compared to the nanomolar concentrations found in normal rats. These results suggest that intrarenal ANG II content can be regulated independently of renal renin content. A similar hypertensive process occurs in rats infused chronically with low doses of ANG II. Renal ANG II content increases over 14 days to a greater extent than the circulating concentrations. Functionally, ANG II infused rats demonstrate reduced sodium excretion and marked suppression of pressure natriuresis. These ANG II dependent influences on kidney function contribute to the maintenance of hypertension. Renal augmentation of ANG II, hypertension, and suppressed sodium excretion are blocked by AT1 receptor blockers. To study the mechanisms responsible for intrarenal ANG II augmentation, we infused a different form of ANG II (Val5 ANG II), that can be separated from endogenous ANG II by HPLC. These results indicated that the increased renal ANG II content was due to accumulation of circulating ANG II in addition to continued production of endogenous ANG II. The renal accumulation of Val5-ANG II was markedly reduced by concomitant treatment with the AT1 receptor blocker, losartan. In addition, we found an unchanged overall ANG II-AT1 receptor protein which probably contributes to the maintained ANG II dependent influences. Collectively, the data support the concept that there is internalization of ANG II through an AT1 receptor mediated process and that some of the internalized ANG II is protected from degradation. The augmented intrarenal ANG II coupled with sustained levels of AT1 receptors contribute to the continued ANG II dependent suppression of renal function and sodium excretion thereby maintaining the hypertension.

                Author and article information

                Kidney Blood Press Res
                Kidney and Blood Pressure Research
                S. Karger AG
                August 2006
                15 August 2006
                : 29
                : 2
                : 74-83
                aCenter for Experimental Medicine and bDepartment of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine; cCenter for Cardiovascular Research and dDepartment of Physiology, 2nd Medical Faculty, Charles University, Prague, Czech Republic; eSection of Nephrology, Medical Policlinic, Department of Medicine, University of Bonn, Bonn, Germany
                92981 Kidney Blood Press Res 2006;29:74–83
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 2, References: 52, Pages: 10
                Self URI (application/pdf):
                Original Paper


                Comment on this article