6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Keratin filaments of mouse epithelial cells are rapidly affected by epidermal growth factor

      research-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of epidermal growth factor (EGF) on the cytokeratin filaments of cultured murine epithelial cells were studied by the indirect immunofluorescence technique with affinity-purified antibodies. Mouse epithelial cells (MMC-E), grown on glass cover slips, and viewed by immunofluorescence microscopy, showed keratin-specific fluorescence as typical bright perinuclear aggregates corresponding to dense paracrystalline granules seen in electron microscopy. Within minutes after an exposure to EGF, the keratin granules in the MMC-E cells decreased. After 10 min of incubation, the cells had spread fibrillar keratin. Such an effect could not be found after a similar exposure to insulin, dexamethasone, dibutyryl cyclic AMP, or antimitotic drugs. EGF, therefore, has a relatively direct effect on the cytoskeletal organization of cultured epithelial cells. These rapid effects on the keratin filaments may explain the simultaneous EGF- induced ultrastructural surface changes of the cells. EGF may thus function as a regulatory factor in the migration of epithelial cells and in the mobility of their cell membranes. The epithelial cell line, MMC-E, should prove a useful model for studies on the action of EGF on nontransformed epithelial cells in vitro.

          Related collections

          Author and article information

          Journal
          J Cell Biol
          The Journal of Cell Biology
          The Rockefeller University Press
          0021-9525
          1540-8140
          1 August 1981
          : 90
          : 2
          : 537-541
          Article
          82031041
          2111857
          6169731
          e47100fb-c74f-44b3-97f6-c4100b3c1cab
          History
          Categories
          Articles

          Cell biology
          Cell biology

          Comments

          Comment on this article