4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol. Gastrointest. Liver Physiol.
          American journal of physiology. Gastrointestinal and liver physiology
          1522-1547
          0193-1857
          May 2011
          : 300
          : 5
          Affiliations
          [1 ] Dept. of Surgery, Univ. of California, San Francisco, 94143-0660, USA.
          Article
          ajpgi.00319.2010
          10.1152/ajpgi.00319.2010
          3094137
          21330446
          e47d9bac-4696-48bd-b28e-2539923c676b
          History

          Comments

          Comment on this article