59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fish Predation by Semi-Aquatic Spiders: A Global Pattern

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 80 incidences of fish predation by semi-aquatic spiders – observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens – are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2–6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [ Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [ Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the ‘swimming’ huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders’ body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Consumer-resource body-size relationships in natural food webs.

          It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A microfluorometric method for quantifying RNA and DNA in terrestrial insects

            Evidence is accumulating for a mechanistic linkage between body phosphorus content and growth and reproduction of individual organisms, due in part to variation in allocation of resources to ribosomal RNA. Testing this connection requires reliable methods of quantifying the nucleic acid content of individual organisms. Although methods for quantifying nucleic acids are available for a wide array of organisms, adaptation of such methods for study of insects has been neglected. Sensitive stains and high throughput fluorometric measurements are now available that substantially improve past methodologies. Here we present methods for the extraction and quantification of insect RNA and DNA based on the use of N-lauroylsarcosine and sonication for extraction, the nucleases RNase and DNase, and the use of microplate fluorescent assays to quantify nucleic acids as percent of body weight in insects. We illustrate the method using Drosophila and curculionid weevils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon and nitrogen transfer from a desert stream to riparian predators.

              Adult aquatic insects emerging from streams may be a significant source of energy for terrestrial predators inhabiting riparian zones. In this study, we use natural abundance delta(13)C and delta(15)N values and an isotopic (15)N tracer addition to quantify the flow of carbon and nitrogen from aquatic to terrestrial food webs via emerging aquatic insects. We continuously dripped labeled (15)N-NH(4) for 6 weeks into Sycamore Creek, a Sonoran desert stream in the Tonto National Forest (central Arizona) and traced the flow of tracer (15)N from the stream into spiders living in the riparian zone. After correcting for natural abundance delta(15)N, we used isotopic mixing models to calculate the proportion of (15)N from emerging aquatic insects incorporated into spider biomass. Natural abundance delta(13)C values indicate that orb-web weaving spiders inhabiting riparian vegetation along the stream channel obtain almost 100% of their carbon from instream sources, whereas ground-dwelling hunting spiders obtain on average 68% of their carbon from instream sources. During the 6-week period of the (15)N tracer addition, orb-web weaving spiders obtained on average 39% of their nitrogen from emerging aquatic insects, whereas spider species hunting on the ground obtained on average 25% of their nitrogen from emerging aquatic insects. To determine if stream subsidies might be influencing the spatial distribution of terrestrial predators, we measured the biomass, abundance and diversity of spiders along a gradient from the active stream channel to a distance of 50 m into the upland using pitfall traps and timed sweep net samples. Spider abundance, biomass and richness were highest within the active stream channel but decreased more than three-fold 25 m from the wetted stream margin. Changes in structural complexity of vegetation, ground cover or terrestrial prey abundance could not account for patterns in spider distributions, however nutrient and energy subsidies from the stream could explain elevated spider numbers and richness within the active stream channel and riparian zone of Sycamore Creek.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                18 June 2014
                : 9
                : 6
                : e99459
                Affiliations
                [1 ]Section of Conservation Biology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
                [2 ]Centre for Excellence in Natural Resource Management, The University of Western Australia, Albany, Australia
                Aarhus University, Denmark
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MN. Performed the experiments: MN. Analyzed the data: MN BJP. Contributed reagents/materials/analysis tools: MN. Wrote the paper: MN BJP. Field work: BJP.

                Article
                PONE-D-13-50691
                10.1371/journal.pone.0099459
                4062410
                24940885
                e490d1a4-5e4d-4be4-bb0d-522e82f97ef6
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 December 2013
                : 14 May 2014
                Page count
                Pages: 21
                Funding
                The authors have no funding or support to report.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Freshwater Ecology
                Evolutionary Biology
                Marine Biology
                Population Biology
                Population Dynamics
                Predator-Prey Dynamics
                Zoology
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Freshwater Environments
                Ecology and Environmental Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article