27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Expression of Adiponectin and Adiponectin Receptors in Human Pituitary Gland and Brain

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: Adiponectin and its receptors, AdipoR1 and AdipoR2, constitute integral components of energy homeostatic mechanism in peripheral tissues. Recent studies have implicated adiponectin in central neural networks regulating food intake and energy expenditure. The present study aimed at investigating the possible expression and distribution of adiponectin and its receptors in human pituitary gland, hypothalamus and different brain areas. Methods: Sections of the pituitary gland, hypothalamus and adjacent basal forebrain area, cerebrum and cerebellum from 35 autopsy cases, were examined using HE, PAS-Orange G, luxol fast blue/cresyl violet stains and single and double immunohistochemistry using adiponectin, AdipoR1, AdipoR2, choline acetyltransferase, FSH, LH, TSH, GH, ACTH and prolactin-specific antibodies. Age and BMI mean values ± SD of the autopsy cases were 56 ± 18 years and 27 ± 5 kg/m<sup>2</sup>, respectively. Results: Strong adiponectin expression was observed in pituitary gland. In pars distalis (PD), adiponectin localized in GH, FSH, LH and TSH-producing cells and in pars tuberalis (PT) in FSH, LH and TSH-producing cells. Strong to moderate expression of AdipoR1 and AdipoR2 was observed in PD by the same cell types as adiponectin. No immunoreactivity for adiponectin receptors was noted in cells of PT. Intense AdipoR1 immunostaining was observed in neurons of lateral hypothalamic area and of nucleus basalis of Meynert (NBM). Conclusions: Adiponectin and its receptors expression in human pituitary might indicate the existence of a local system, modulating endocrine axes. Furthermore, the presence of AdipoR1 in hypothalamus and NBM suggests that adiponectin may participate in central neural signaling pathways controlling energy homeostasis and higher brain functions.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.

          Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake.

            Adiponectin has been shown to stimulate fatty acid oxidation and enhance insulin sensitivity through the activation of AMP-activated protein kinase (AMPK) in the peripheral tissues. The effects of adiponectin in the central nervous system, however, are still poorly understood. Here, we show that adiponectin enhances AMPK activity in the arcuate hypothalamus (ARH) via its receptor AdipoR1 to stimulate food intake; this stimulation of food intake by adiponectin was attenuated by dominant-negative AMPK expression in the ARH. Moreover, adiponectin also decreased energy expenditure. Adiponectin-deficient mice showed decreased AMPK phosphorylation in the ARH, decreased food intake, and increased energy expenditure, exhibiting resistance to high-fat-diet-induced obesity. Serum and cerebrospinal fluid levels of adiponectin and expression of AdipoR1 in the ARH were increased during fasting and decreased after refeeding. We conclude that adiponectin stimulates food intake and decreases energy expenditure during fasting through its effects in the central nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An 18-year follow-up of overweight and risk of Alzheimer disease.

              Overweight and obesity are epidemic in Western societies and constitute a major public health problem because of adverse effects on vascular health. Vascular factors may play a role in the development of a rapidly growing disease of late life, Alzheimer disease (AD). Using body mass index (BMI, calculated as weight in kilograms divided by the square of height in meters), we examined whether overweight is a risk factor for dementia and AD. The relationship between BMI and dementia risk was investigated in a representative cohort of 392 nondemented Swedish adults who were followed up from age 70 to 88 years, with the use of neuropsychiatric, anthropometric, and other measurements. Multivariate Cox proportional hazards regression analyses included BMI, blood pressure, cardiovascular disease, cigarette smoking, socioeconomic status, and treatment for hypertension. During the 18-year follow-up (4184.8 risk-years), 93 participants were diagnosed as having dementia. Women who developed dementia between ages 79 and 88 years were overweight, with a higher average BMI at age 70 years (27.7 vs 25.7; P =.007), 75 years (27.9 vs 25.0; P<.001), and 79 years (26.9 vs 25.1; P =.02) compared with nondemented women. A higher degree of overweight was observed in women who developed AD at 70 years (29.3; P =.009), 75 years (29.6; P<.001), and 79 years (28.2; P =.003) compared with nondemented women. For every 1.0 increase in BMI at age 70 years, AD risk increased by 36%. These associations were not found in men. Overweight is epidemic in Western societies. Our data suggest that overweight at high ages is a risk factor for dementia, particularly AD, in women. This may have profound implications for dementia prevention.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2009
                January 2009
                13 August 2008
                : 89
                : 1
                : 38-47
                Affiliations
                aDepartment of Anatomy-Histology-Embryology, and bEndocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, Patras, and cDepartment of Forensic Sciences, School of Medicine, University of Crete, Heraklion, Greece
                Article
                151396 Neuroendocrinology 2009;89:38–47
                10.1159/000151396
                18698133
                e49a2de6-0aa2-4d46-89fe-a7c43889693c
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 15 October 2007
                : 23 April 2008
                Page count
                Figures: 4, Tables: 1, References: 45, Pages: 10
                Categories
                Appetite and Energy Balance

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Pituitary,Hypothalamus,Nucleus basalis of Meynert,Adiponectin receptors,Adiponectin

                Comments

                Comment on this article