29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Diversity in Endangered Guizhou Snub-Nosed Monkeys ( Rhinopithecus brelichi): Contrasting Results from Microsatellite and Mitochondrial DNA Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To evaluate the conservation status of a species or population it is necessary to gain insight into its ecological requirements, reproduction, genetic population structure, and overall genetic diversity. In our study we examined the genetic diversity of Rhinopithecus brelichi by analyzing microsatellite data and compared them with already existing data derived from mitochondrial DNA, which revealed that R. brelichi exhibits the lowest mitochondrial diversity of all so far studied Rhinopithecus species. In contrast, the genetic diversity of nuclear DNA is high and comparable to other Rhinopithecus species, i.e. the examined microsatellite loci are similarly highly polymorphic as in other species of the genus. An explanation for these differences in mitochondrial and nuclear genetic diversity could be a male biased dispersal. Females most likely stay within their natal band and males migrate between bands, thus mitochondrial DNA will not be exchanged between bands but nuclear DNA via males. A Bayesian Skyline Plot based on mitochondrial DNA sequences shows a strong decrease of the female effective population size (N ef) starting about 3,500 to 4,000 years ago, which concurs with the increasing human population in the area and respective expansion of agriculture. Given that we found no indication for a loss of nuclear DNA diversity in R. brelichi it seems that this factor does not represent the most prominent conservation threat for the long-term survival of the species. Conservation efforts should therefore focus more on immediate threats such as development of tourism and habitat destruction.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

          A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized least-squares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3 +/- 11.7, 13.3 +/- 1.5, 10.9 +/- 1.2, 3.7 +/- 0.6, and 2.7 +/- 0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the pipedal creature Australopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a proto-chimpanzee after the former had developed bipedalism.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of taxonomy in species conservation.

              Taxonomy and species conservation are often assumed to be completely interdependent activities. However, a shortage of taxonomic information and skills, and confusion over where the limits to 'species' should be set, both cause problems for conservationists. There is no simple solution because species lists used for conservation planning (e.g. threatened species, species richness estimates, species covered by legislation) are often also used to determine which units should be the focus of conservation actions; this despite the fact that the two processes have such different goals and information needs. Species conservation needs two kinds of taxonomic solution: (i) a set of practical rules to standardize the species units included on lists; and (ii) an approach to the units chosen for conservation recovery planning which recognizes the dynamic nature of natural systems and the differences from the units in listing processes that result. These solutions are well within our grasp but require a new kind of collaboration among conservation biologists, taxonomists and legislators, as well as an increased resource of taxonomists with relevant and high-quality skills.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                29 August 2013
                : 8
                : 8
                : e73647
                Affiliations
                [1 ]Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
                [2 ]Fanjingshan National Nature Reserve, Jiangkou, China
                [3 ]Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
                [4 ]Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
                Natural History Museum of Denmark, Denmark
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DZ CR. Performed the experiments: JK MY. Analyzed the data: JK MY DZ CR. Contributed reagents/materials/analysis tools: JK MY DZ CR. Wrote the paper: JK DZ CR.

                Article
                PONE-D-13-22959
                10.1371/journal.pone.0073647
                3756984
                24009761
                e49b551f-4873-428d-b91c-ac1b98ca7b88
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 June 2013
                : 24 July 2013
                Page count
                Pages: 7
                Funding
                The Margot Marsh Biodiversity Foundation and the German Primate Center financially supported this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article