15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Existing and Future Drugs for the Treatment of the Dark Side of Addiction

      1 , 1
      Annual Review of Pharmacology and Toxicology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The identification of a heuristic framework for the stages of the addiction cycle that are linked to neurocircuitry changes in pathophysiology includes the binge/intoxication stage, the withdrawal/negative affect stage, and the preoccupation/anticipation (craving) stage, which represent neuroadaptations in three neurocircuits (basal ganglia, extended amygdala, and frontal cortex, respectively). The identification of excellent and validated animal models, the development of human laboratory models, and an enormous surge in our understanding of neurocircuitry and neuropharmacological mechanisms have provided a revisionist view of addiction that emphasizes the loss of brain reward function and gain of stress function that drive negative reinforcement (the dark side of addiction) as a key to compulsive drug seeking. Reversing the dark side of addiction not only explains much of the existing successful pharmacotherapies for addiction but also points to vast new opportunities for future medications to alleviate this major source of human suffering.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Addiction and the brain antireward system.

          A neurobiological model of the brain emotional systems has been proposed to explain the persistent changes in motivation that are associated with vulnerability to relapse in addiction, and this model may generalize to other psychopathology associated with dysregulated motivational systems. In this framework, addiction is conceptualized as a cycle of decreased function of brain reward systems and recruitment of antireward systems that progressively worsen, resulting in the compulsive use of drugs. Counteradaptive processes, such as opponent process, that are part of the normal homeostatic limitation of reward function fail to return within the normal homeostatic range and are hypothesized to repeatedly drive the allostatic state. Excessive drug taking thus results in not only the short-term amelioration of the reward deficit but also suppression of the antireward system. However, in the long term, there is worsening of the underlying neurochemical dysregulations that ultimately form an allostatic state (decreased dopamine and opioid peptide function, increased corticotropin-releasing factor activity). This allostatic state is hypothesized to be reflected in a chronic deviation of reward set point that is fueled not only by dysregulation of reward circuits per se but also by recruitment of brain and hormonal stress responses. Vulnerability to addiction may involve genetic comorbidity and developmental factors at the molecular, cellular, or neurocircuitry levels that sensitize the brain antireward systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The reinstatement model of drug relapse: history, methodology and major findings.

            The reinstatement model is currently used in many laboratories to investigate mechanisms underlying relapse to drug seeking. Here, we review briefly the history of the model and describe the different procedures that have been used to study the phenomenon of reinstatement of drug seeking. The results from studies using pharmacological and neuroanatomical techniques to determine the neuronal events that mediate reinstatement of heroin, cocaine and alcohol seeking by acute priming injections of drugs, drug-associated cues and environmental stressors are summarized. In addition, several issues are discussed, including (1) the concordance between the neuronal mechanisms involved in drug-induced reinstatement and those involved in drug reward and discrimination, (2) the role of drug withdrawal states and periods in reinstatement of drug seeking, (3) the role of neuronal adaptations induced by exposure to drugs in relapse, and (4) the degree to which the rat reinstatement model provides a suitable preclinical model of relapse to drug taking. The data derived from studies using the reinstatement model suggest that the neuronal events that mediate drug-, cue- and stress-induced reinstatement of drug seeking are not identical, that the mechanisms underlying drug-induced reinstatement are to some degree different from those mediating drug discrimination or reward, and that the duration of the withdrawal period following cocaine and heroin self-administration has a profound effect on reinstatement induced by drug cues and stress. Finally, there appears to be a good correspondence between the events that induce reinstatement in laboratory animals and those that provoke relapse in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for brain stress systems in addiction.

              Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
                Bookmark

                Author and article information

                Journal
                Annual Review of Pharmacology and Toxicology
                Annu. Rev. Pharmacol. Toxicol.
                Annual Reviews
                0362-1642
                1545-4304
                January 06 2016
                January 06 2016
                : 56
                : 1
                : 299-322
                Affiliations
                [1 ]Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037; email: ,
                Article
                10.1146/annurev-pharmtox-010715-103143
                26514207
                e49da353-07c1-4866-b610-ddbfb1d1d843
                © 2016
                History

                Sociology,Psychology,Neurology,Social & Behavioral Sciences,Health & Social care,Public health

                Comments

                Comment on this article