38
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Gβ protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human pathogenic fungus Paracoccidioides brasiliensis (Pb) undergoes a morphological transition from a saprobic mycelium to pathogenic yeast that is controlled by the cAMP-signaling pathway. There is a change in the expression of the Gβ-protein PbGpb1, which interacts with adenylate cyclase, during this morphological transition. We exploited the fact that the cAMP-signaling pathway of Saccharomyces cerevisiae does not include a Gβ-protein to probe the functional role of PbGpb1. We present data that indicates that PbGpb1 and the transcriptional regulator PbTupA both bind to the PKA protein PbTpk2. PbTPK2 was able to complement a TPK2Δ strain of S. cerevisiae, XPY5a/α, which was defective in pseudohyphal growth. Whilst PbGPB1 had no effect on the parent S. cerevisiae strain, MLY61a/α, it repressed the filamentous growth of XPY5a/α transformed with PbTPK2, behaviour that correlated with a reduced expression of the floculin FLO11. In vitro, PbGpb1 reduced the kinase activity of PbTpk2, suggesting that inhibition of PbTpk2 by PbGpb1 reduces the level of expression of Flo11, antagonizing the filamentous growth of the cells. In contrast, expressing the co-regulator PbTUPA in XPY5a/α cells transformed with PbTPK2, but not untransformed cells, induced hyperfilamentous growth, which could be antagonized by co-transforming the cells with PbGPB1. PbTUPA was unable to induce the hyperfilamentous growth of a FLO8Δ strain, suggesting that PbTupA functions in conjunction with the transcription factor Flo8 to control Flo11 expression. Our data indicates that P. brasiliensis PbGpb1 and PbTupA, both of which have WD/β-propeller structures, bind to PbTpk2 to act as antagonistic molecular switches of cell morphology, with PbTupA and PbGpb1 inducing and repressing filamentous growth, respectively. Our findings define a potential mechanism for controlling the morphological switch that underpins the virulence of dimorphic fungi.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of protein phosphorylation in yeast.

          Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.
            • Record: found
            • Abstract: not found
            • Article: not found

            Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression.

              • Record: found
              • Abstract: found
              • Article: not found

              NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction.

              In response to a variety of external signals, the fungal pathogen Candida albicans undergoes a transition between ellipsoidal single cells (blastospores) and filaments composed of elongated cells attached end-to-end. Here we identify a DNA-binding protein, Nrg1, that represses filamentous growth in Candida probably by acting through the co-repressor Tup1. nrg1 mutant cells are predominantly filamentous under non-filament-inducing conditions and their colony morphology resembles that of tup1 mutants. We also identify two filament-specific genes, ECE1 and HWP1, whose transcription is repressed by Nrg1 under non-inducing conditions. These genes constitute a subset of those under Tup1 control, providing further evidence that Nrg1 acts by recruiting Tup1 to target genes. We show that growth in serum at 37 degrees C, a potent inducer of filamentous growth, causes a reduction of NRG1 mRNA, suggesting that filamentous growth is induced by the down-regulation of NRG1. Consistent with this idea, expression of NRG1 from a non-regulated promoter partially blocks the induction of filamentous growth.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                3 September 2015
                2015
                : 10
                : 9
                : e0136866
                Affiliations
                [1 ]School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
                [2 ]Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
                [3 ]ICVS/3B’s - PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
                Universidade de Sao Paulo, BRAZIL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FJR MIBW ARW. Performed the experiments: TKJ GC DC JFM. Analyzed the data: TKJ MIBW ARW. Wrote the paper: MIBW ARW.

                [¤a]

                Current address: Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom

                [¤b]

                Current address: School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China

                Article
                PONE-D-15-27233
                10.1371/journal.pone.0136866
                4559445
                26334875
                e4a1efcf-4f9b-4770-892a-b22fa867c331
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 22 June 2015
                : 9 August 2015
                Page count
                Figures: 7, Tables: 2, Pages: 28
                Funding
                This work was supported by grants from the Wellcome Trust 069445, and GC and DC were the recipients of Wellcome Trust travelling fellowships. (Wellcome.ac.uk.) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log