65
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic

      discussion
      a , b , a , b
      Lancet (London, England)
      Elsevier Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 variants, spike mutations and immune escape

          Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of ‘variants of concern’, that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets. The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been characterized by the emergence of mutations and so-called variants of concern that impact virus characteristics, including transmissibility and antigenicity. In this Review, members of the COVID-19 Genomics UK (COG-UK) Consortium and colleagues summarize mutations of the SARS-CoV-2 spike protein, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study

            Background Vaccine effectiveness studies have not differentiated the effect of the delta (B.1.617.2) variant and potential waning immunity in observed reductions in effectiveness against SARS-CoV-2 infections. We aimed to evaluate overall and variant-specific effectiveness of BNT162b2 (tozinameran, Pfizer–BioNTech) against SARS-CoV-2 infections and COVID-19-related hospital admissions by time since vaccination among members of a large US health-care system. Methods In this retrospective cohort study, we analysed electronic health records of individuals (≥12 years) who were members of the health-care organisation Kaiser Permanente Southern California (CA, USA), to assess BNT162b2 vaccine effectiveness against SARS-CoV-2 infections and COVID-19-related hospital admissions for up to 6 months. Participants were required to have 1 year or more previous membership of the organisation. Outcomes comprised SARS-CoV-2 PCR-positive tests and COVID-19-related hospital admissions. Effectiveness calculations were based on hazard ratios from adjusted Cox models. This study was registered with ClinicalTrials.gov , NCT04848584. Findings Between Dec 14, 2020, and Aug 8, 2021, of 4 920 549 individuals assessed for eligibility, we included 3 436 957 (median age 45 years [IQR 29–61]; 1 799 395 [52·4%] female and 1 637 394 [47·6%] male). For fully vaccinated individuals, effectiveness against SARS-CoV-2 infections was 73% (95% CI 72–74) and against COVID-19-related hospital admissions was 90% (89–92). Effectiveness against infections declined from 88% (95% CI 86–89) during the first month after full vaccination to 47% (43–51) after 5 months. Among sequenced infections, vaccine effectiveness against infections of the delta variant was high during the first month after full vaccination (93% [95% CI 85–97]) but declined to 53% [39–65] after 4 months. Effectiveness against other (non-delta) variants the first month after full vaccination was also high at 97% (95% CI 95–99), but waned to 67% (45–80) at 4–5 months. Vaccine effectiveness against hospital admissions for infections with the delta variant for all ages was high overall (93% [95% CI 84–96]) up to 6 months. Interpretation Our results provide support for high effectiveness of BNT162b2 against hospital admissions up until around 6 months after being fully vaccinated, even in the face of widespread dissemination of the delta variant. Reduction in vaccine effectiveness against SARS-CoV-2 infections over time is probably primarily due to waning immunity with time rather than the delta variant escaping vaccine protection. Funding Pfizer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England

                Bookmark

                Author and article information

                Journal
                Lancet
                Lancet
                Lancet (London, England)
                Elsevier Ltd.
                0140-6736
                1474-547X
                3 December 2021
                3 December 2021
                Affiliations
                [a ]Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
                [b ]Mailman School of Public Health, Columbia University, New York, NY 10032, USA
                Article
                S0140-6736(21)02758-6
                10.1016/S0140-6736(21)02758-6
                8640673
                34871545
                e4b54a13-039d-48f1-abec-7cf379d38310
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Comment

                Medicine
                Medicine

                Comments

                Comment on this article