10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To assess the relative roles and potential contribution of adrenergic receptor subtypes other than the beta3-adrenergic receptor in norepinephrine-mediated glucose uptake in brown adipocytes, we have here analyzed adrenergic activation of glucose uptake in primary cultures of brown adipocytes from wild-type and beta3-adrenergic receptor knockout (KO) mice. In control cells in addition to high levels of beta3-adrenergic receptor mRNA, there were relatively low alpha1A-, alpha1D-, and moderate beta1-adrenergic receptor mRNA levels with no apparent expression of other adrenergic receptors. The levels of alpha1A-, alpha1D-, and beta1-adrenergic receptor mRNA were not changed in the beta3-KO brown adipocytes, indicating that the beta3-adrenergic receptor ablation does not influence adrenergic gene expression in brown adipocytes in culture. As expected, the beta3-adrenergic receptor agonists BRL-37344 and CL-316 243 did not induce 2-deoxy-d-glucose uptake in beta3-KO brown adipocytes. Surprisingly, the endogenous adrenergic neurotransmitter norepinephrine induced the same concentration-dependent 2-deoxy-D-glucose uptake in wild-type and beta3-KO brown adipocytes. This study demonstrates that beta1-adrenergic receptors, and to a smaller degree alpha1-adrenergic receptors, functionally compensate for the lack of beta3-adrenergic receptors in glucose uptake. Beta1-adrenergic receptors activate glucose uptake through a cAMP/protein kinase A/phosphatidylinositol 3-kinase pathway, stimulating conventional and novel protein kinase Cs. The alpha1-adrenergic receptor component (that is not evident in wild-type cells) stimulates glucose uptake through a phosphatidylinositol 3-kinase and protein kinase C pathway in the beta3-KO cells.

          Related collections

          Author and article information

          Journal
          Endocrinology
          Endocrinology
          The Endocrine Society
          0013-7227
          0013-7227
          May 2005
          : 146
          : 5
          Affiliations
          [1 ] The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, SE-106 91 Sweden.
          Article
          en.2004-1104
          10.1210/en.2004-1104
          15665039
          e4bf5d5c-ddbb-4645-8054-69b4e26d1dda
          History

          Comments

          Comment on this article