+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      The chicken type III GnRH receptor homologue is predominantly expressed in the pituitary, and exhibits similar ligand selectivity to the type I receptor


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Two GnRH isoforms (cGnRH-I and GnRH-II) and two GnRH receptor subtypes (cGnRH-R-I and cGnRH-R-III) occur in chickens. Differential roles for these molecules in regulating gonadotrophin secretion or other functions are unclear. To investigate this we cloned cGnRH-R-III from a broiler chicken and compared its structure, expression and pharmacological properties with cGnRH-R-I. The broiler cGnRH-R-III cDNA was 100% identical to the sequence reported in the red jungle fowl and white leghorn breed. Pituitary cGnRH-R-III mRNA was ∼1400-fold more abundant than cGnRH-R-I mRNA. Northern analysis indicated a single cGnRH-R-III transcript. A pronounced sex and age difference existed, with higher pituitary transcript levels in sexually mature females versus juvenile females. In contrast, higher expression levels occurred in juvenile males versus sexually mature males. Functional studies in COS-7 cells indicated that cGnRH-R-III has a higher binding affinity for GnRH-II than cGnRH-I ( K d: 0·57 vs 19·8 nM) with more potent stimulation of inositol phosphate production (ED 50: 0·8 vs 4·38 nM). Similar results were found for cGnRH-R-I, ( K d: 0·51 vs 10·8 nM) and (ED 50: 0·7 vs 2·8 nM). The initial rate of internalisation was faster for cGnRH-R-III than cGnRH-R-I (26 vs 15·8%/min). Effects of GnRH antagonists were compared at the two receptors. Antagonist #27 distinguished between cGnRH-R-I and cGnRH-R-III (IC 50: 2·3 vs 351 nM). These results suggest that cGnRH-R-III is probably the major mediator of pituitary gonadotroph function, that antagonist #27 may allow delineation of receptor subtype function in vitro and in vivo and that tissue-specific recruitment of cGnRH-R isoforms has occurred during evolution.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Gonadotropin-releasing hormone receptors.

          GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
            • Record: found
            • Abstract: found
            • Article: not found

            GnRHs and GnRH receptors.

            GnRH is the pivotal hypothalamic hormone regulating reproduction. Over 20 forms of the decapeptide have been identified in which the NH2- and COOH-terminal sequences, which are essential for receptor binding and activation, are conserved. In mammals, there are two forms, GnRH I which regulates gonadotropin and GnRH II which appears to be a neuromodulator and stimulates sexual behaviour. GnRHs also occur in reproductive tissues and tumours in which a paracrine/autocrine role is postulated. GnRH agonists and antagonists are now extensively used to treat hormone-dependent diseases, in assisted conception and have promise as novel contraceptives. Non-peptide orally-active GnRH antagonists have been recently developed and may increase the flexibility and range of utility. As with GnRH, GnRH receptors have undergone co-ordinated gene duplications such that cognate receptor subtypes for respective ligands exist in most vertebrates. Interestingly, in man and some other mammals (e.g. chimp, sheep and bovine) the Type II GnRH receptor has been silenced. However, GnRH I and GnRH II still appear to have distinct roles in signalling differentially through the Type I receptor (ligand-selective-signalling) to have different downstream effects. The ligand-receptor interactions and receptor conformational changes involved in receptor activation have been partly delineated. Together, these findings are setting the scene for generating novel selective GnRH analogues with potential for wider and more specific application.
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides.

              The formation of inositol phosphates in response to agonists was studied in brain slices, parotid gland fragments and in the insect salivary gland. The tissues were first incubated with [3H]inositol, which was incorporated into the phosphoinositides. All the tissues were found to contain glycerophosphoinositol, inositol 1-phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate, which were identified by using anion-exchange and high-resolution anion-exchange chromatography, high-voltage paper ionophoresis and paper chromatography. There was no evidence for the existence of inositol 1:2-cyclic phosphate. A simple anion-exchange chromatographic method was developed for separating these inositol phosphates for quantitative analysis. Stimulation caused no change in the levels of glycerophosphoinositol in any of the tissues. The most prominent change concerned inositol 1,4-bisphosphate, which increased enormously in the insect salivary gland and parotid gland after stimulation with 5-hydroxytryptamine and carbachol respectively. Carbachol also induced a large increase in the level of inositol 1,4,5-trisphosphate in the parotid. Stimulation of brain slices with carbachol induced modest increase in the bis- and tris-phosphate. In all the tissues studied, there was a significant agonist-dependent increase in the level of inositol 1-phosphate. The latter may be derived from inositol 1,4-bisphosphate, because homogenates of the insect salivary gland contain a bisphosphatase in addition to a trisphosphatase. These results suggest that the earliest event in the stimulus-response pathway is the hydrolysis of polyphosphoinositides by a phosphodiesterase to yield inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate, which are subsequently hydrolysed to inositol 1-phosphate and inositol. The absence of inositol 1:2-cyclic phosphate could indicate that, at very short times after stimulation, phosphatidylinositol is not catabolized by its specific phosphodiesterase, or that any cyclic derivative liberated is rapidly hydrolysed by inositol 1:2-cyclic phosphate 2-phosphohydrolase.

                Author and article information

                J Endocrinol
                The Journal of Endocrinology
                BioScientifica (Bristol )
                July 2009
                20 March 2009
                : 202
                : 1
                : 179-190
                [1 ]simpleRoyal (Dick) School of Veterinary Studies, The Roslin Institute simpleUniversity of Edinburgh Roslin, Midlothian, Edinburgh, EH25 9PSUK
                [2 ]simpleMRC Human Reproductive Sciences Unit simpleThe Queen's Medical Research Institute Edinburgh, EH16 5TJUK
                [3 ]simpleMRC/UCT Group for Receptor Biology simpleUniversity of Cape Town Cape Town, 7925South Africa
                Author notes
                (Correspondence should be addressed to N T Joseph; Email: nerine.joseph@ 123456bbsrc.ac.uk )
                © 2009 Society for Endocrinology

                This is an Open Access article distributed under the terms of the Society for Endocrinology's Re-use Licence which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 26 March 2009
                : 20 April 2009
                Funded by: Medical Research Council
                Regular papers

                Endocrinology & Diabetes
                Endocrinology & Diabetes


                Comment on this article