Flow in streams and rivers typically erodes the banks, causing channel bank migration laterally, resulting in loss of nearby land, modification in channel morphology, excessive sediment transport, and water quality degradation. A spur dike is a hydraulic structure placed at the channel bank projecting outward to guide or divert the flow away from the bank, thus protecting it from erosion. The stability of the riverbed and banks is influenced by turbulent characteristics such as three-dimensional velocity distribution, turbulent kinetic energy, Reynolds shear stress, turbulent intensity, and bed shear stress. The researchers found that these turbulence parameters are instrumental in sediment movement along the channel's bed and from its banks. Spurs dikes are a significant river training structure provided along the river bank to protect from erosion. Several aspects related to spur dikes, such as their geometry, physical features, design considerations, flow and scour patterns, etc., are critically reviewed in this paper. Despite the numbers of literature in the field of turbulent characteristics and scour depth around spur dike, the role of vegetation and the effect of seepage around spur dike still remains an unexplored area. These knowledge gaps of spur dikes in field conditions are discussed for future studies.