4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Limited central side effects of a β-subunit subtype-selective GABAA receptor allosteric modulator

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes.

          GABA(A) (γ-aminobutyric acid, type A) receptors are a family of ligand-gated ion channels that are essential for the regulation of central nervous system function. Benzodiazepines - which non-selectively target GABA(A) receptors containing the α1, α2, α3 or α5 subunits - have been in clinical use for decades and are still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders. However, their use is limited by side effects and the risk of drug dependence. In the past decade, the identification of separable key functions of GABA(A) receptor subtypes suggests that receptor subtype-selective compounds could overcome the limitations of classical benzodiazepines; furthermore, they might be valuable for novel indications such as chronic pain, depression, schizophrenia, cognitive enhancement and stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural bases for addictive properties of benzodiazepines

            Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals. Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward system that ultimately may induce the pathological behavior. The neural basis for the addictive nature of benzodiazepines however remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental area through the positive modulation of GABAA receptors in nearby interneurons. Such disinhibition, which relies on α1-containing GABAARs expressed in these cells, triggers drug-evoked synaptic plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell type-specific expression of α1-containing GABAARs in the ventral tegmental area. The data also suggest that subunitselective benzodiazepines sparing α1 may be devoid of addiction liability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia.

              Deficits in working memory and cognitive control in schizophrenia are associated with impairments in prefrontal cortical function, including altered gamma band oscillations. These abnormalities are thought to reflect a deficiency in the synchronization of pyramidal cell activity that is dependent, in part, on gamma-aminobutyric acid (GABA) neurotransmission through GABA type A (GABA(A)) receptors containing alpha(2) subunits. The authors conducted a proof-of-concept clinical trial designed to test the hypothesis that a novel compound with relatively selective agonist activity at GABA(A) receptors containing alpha(2) subunits would improve cognitive function and gamma band oscillations in individuals with schizophrenia. Participants were male subjects (N=15) with chronic schizophrenia who were randomly assigned to receive 4 weeks of treatment with the study drug MK-0777, a benzodiazepine-like agent with selective activity at GABA(A) receptors containing alpha(2) or alpha(3) subunits, or a matched placebo in a double-blind fashion. Outcome measures were the Brief Psychiatric Rating Scale (BPRS), Repeatable Battery for the Assessment of Neuropsychological Status, three tests of working memory and/or cognitive control (N-back, AX Continuous Performance Test, and Preparing to Overcome Prepotency), and EEG measures of gamma band oscillations induced during the Preparing to Overcome Prepotency task. Compared with placebo, the MK-0777 compound was associated with improved performance on the N-back, AX Continuous Performance Test, and Preparing to Overcome Prepotency tasks. The compound was also associated with increased frontal gamma band power during the Preparing to Overcome Prepotency task. No effects of the MK-0777 compound were detected in BPRS or Repeatable Battery for the Assessment of Neuropsychological Status scores, with the exception of improvement on the Repeatable Battery for the Assessment of Neuropsychological Status delayed memory index. The MK-0777 agent was well-tolerated. These findings provide preliminary support for the hypothesis that enhanced GABA activity at alpha(2) subunit containing GABA(A) receptors improves behavioral and electrophysiological measures of prefrontal function in individuals with schizophrenia.
                Bookmark

                Author and article information

                Journal
                Journal of Psychopharmacology
                J Psychopharmacol
                SAGE Publications
                0269-8811
                1461-7285
                April 08 2014
                October 09 2013
                May 2014
                : 28
                : 5
                : 472-478
                Affiliations
                [1 ]Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA, USA
                [2 ]Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
                Article
                10.1177/0269881113507643
                e4d2a2c1-d344-4cf7-988e-9e284165f6b5
                © 2014

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article