10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vascular endothelial growth factor-C, a potential paracrine regulator of glomerular permeability, increases glomerular endothelial cell monolayer integrity and intracellular calcium.

      The American Journal of Pathology
      Antigens, CD, metabolism, Cadherins, Calcium, Calcium Signaling, drug effects, Cardiac Myosins, Cell Line, Electric Impedance, Endothelial Cells, cytology, ultrastructure, Fluorescein-5-isothiocyanate, Humans, Intracellular Space, Kidney Glomerulus, physiology, Mutant Proteins, pharmacology, Myosin Light Chains, Paracrine Communication, Permeability, Phosphorylation, Time Factors, Vascular Endothelial Growth Factor A, Vascular Endothelial Growth Factor C, Vascular Endothelial Growth Factor Receptor-2, Vascular Endothelial Growth Factor Receptor-3

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have previously reported expression of vascular endothelial growth factor (VEGF)-A and -C in glomerular podocytes and actions of VEGF-A on glomerular endothelial cells (GEnC) that express VEGF receptor-2 (VEGFR-2). Here we define VEGFR-3 expression in GEnC and investigate the effects of the ligand VEGF-C. Renal cortex and cultured GEnC were examined by microscopy, and both cell and glomerular lysates were assessed by Western blotting. VEGF-C effects on trans-endothelial electrical resistance and albumin flux across GEnC monolayers were measured. The effects of VEGF-C156S, a VEGFR-3-specific agonist, and VEGF-A were also studied. VEGF-C effects on intracellular calcium ([Ca2+]i) were measured using a fluorescence technique, receptor phosphorylation was examined by immunoprecipitation assays, and phosphorylation of myosin light chain-2 and VE-cadherin was assessed by blotting with phospho-specific antibodies. GEnC expressed VEGFR-3 in tissue sections and culture, and VEGF-C increased trans-endothelial electrical resistance in a dose-dependent manner with a maximal effect at 120 minutes of 6.8 Omega whereas VEGF-C156S had no effect. VEGF-C reduced labeled albumin flux by 32.8%. VEGF-C and VEGF-A increased [Ca2+]i by 15% and 39%, respectively. VEGF-C phosphorylated VEGFR-2 but not VEGFR-3, myosin light chain-2, or VE-cadherin. VEGF-C increased GEnC monolayer integrity and increased [Ca2+]i, which may be related to VEGF-C-S particular receptor binding and phosphorylation induction characteristics. These observations suggest that podocytes direct GEnC behavior through both VEGF-C and VEGF-A.

          Related collections

          Author and article information

          Comments

          Comment on this article