72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Within the fold: assessing differential expression measures and reproducibility in microarray assays

      research-article

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fold-change' cutoffs have been widely used in microarray assays to identify genes that are differentially expressed. More accurate measures are required to identify high-confidence sets of genes with biologically meaningful changes in transcription. A general procedure for analyzing cDNA microarray data is proposed and validated. It is shown that pooled reference samples should be based not only on the expression of individual genes in each cell line but also on the expression levels of genes within cell lines.

          Abstract

          Background

          'Fold-change' cutoffs have been widely used in microarray assays to identify genes that are differentially expressed between query and reference samples. More accurate measures of differential expression and effective data-normalization strategies are required to identify high-confidence sets of genes with biologically meaningful changes in transcription. Further, the analysis of a large number of expression profiles is facilitated by a common reference sample, the construction of which must be carefully addressed.

          Results

          We carried out a series of 'self-self' hybridizations in which aliquots of the same RNA sample were labeled separately with Cy3 and Cy5 fluorescent dyes and co-hybridized to the same microarray. From this, we can analyze the intensity-dependent behavior of microarray data, define a statistically significant measure of differential expression that exploits the structure of the fluorescent signals, and measure the inherent reproducibility of the technique. We also devised a simple procedure for identifying and eliminating low-quality data for replicates within and between slides. We examine the properties required of a universal reference RNA sample and show how pooling a small number of samples with a diverse representation of expressed genes can outperform more complex mixtures as a reference sample.

          Conclusion

          Analysis of cell-line samples can identify systematic structure in measured gene-expression levels. A general procedure for analyzing cDNA microarray data is proposed and validated. We show that pooled reference samples should be based not only on the expression of individual genes in each cell line but also on the expression levels of genes within cell lines.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.

          Y. H. Yang (2002)
          There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative monitoring of gene expression patterns with a complementary DNA microarray.

            A high-capacity system was developed to monitor the expression of many genes in parallel. Microarrays prepared by high-speed robotic printing of complementary DNAs on glass were used for quantitative expression measurements of the corresponding genes. Because of the small format and high density of the arrays, hybridization volumes of 2 microliters could be used that enabled detection of rare transcripts in probe mixtures derived from 2 micrograms of total cellular messenger RNA. Differential expression measurements of 45 Arabidopsis genes were made by means of simultaneous, two-color fluorescence hybridization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional discovery via a compendium of expression profiles.

              Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2002
                24 October 2002
                : 3
                : 11
                : research0062.1-research0062.12
                Affiliations
                [1 ]The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
                [2 ]H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
                Correspondemce: John Quackenbush. E-mail: johnq@tigr.org
                Article
                gb-2002-3-11-research0062
                133446
                12429061
                e4d8fa14-d2f0-49a5-b4d3-aaadc799beab
                Copyright © 2002 Yang et al., licensee BioMed Central Ltd
                History
                : 22 May 2002
                : 28 August 2002
                : 19 September 2002
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article