0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hash-MAC-DSDV: Mutual Authentication for Intelligent IoT-Based Cyber-Physical Systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyber-Physical Systems (CPS) connected in the form of Internet of Things (IoT) are vulnerable to various security threats, due to the infrastructure-less deployment of IoT devices. Device-to-Device (D2D) authentication of these networks ensures the integrity, authenticity, and confidentiality of information in the deployed area. The literature suggests different approaches to address security issues in CPS technologies. However, they are mostly based on centralized techniques or specific system deployments with higher cost of computation and communication. It is therefore necessary to develop an effective scheme that can resolve the security problems in CPS technologies of IoT devices. In this paper, a lightweight Hash-MAC-DSDV (Hash Media Access Control Destination Sequence Distance Vector) routing scheme is proposed to resolve authentication issues in CPS technologies, connected in the form of IoT networks. For this purpose, a CPS of IoT devices (multi-WSNs) is developed from the local-chain and public chain, respectively. The proposed scheme ensures D2D authentication by the Hash-MAC-DSDV mutual scheme, where the MAC addresses of individual devices are registered in the first phase and advertised in the network in the second phase. The proposed scheme allows legitimate devices to modify their routing table and unicast the one-way hash authentication mechanism to transfer their captured data from source towards the destination. Our evaluation results demonstrate that Hash- MAC-DSDV outweighs the existing schemes in terms of attack detection, energy consumption and communication metrics.

          Related collections

          Author and article information

          Journal
          17 May 2021
          Article
          2105.07711
          e4edb222-d0f7-4b8f-a1ea-cae2fac5efe9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Accepted by the IEEE Internet of Things Journal. The copyright is with the IEEE
          cs.CR cs.NI

          Security & Cryptology,Networking & Internet architecture
          Security & Cryptology, Networking & Internet architecture

          Comments

          Comment on this article