114
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Empfehlungen zur Lungen- und Thoraxsonographie bei Patienten mit COVID-19-Erkrankung Translated title: German recommendations on lung and thoracic ultrasonography in patients with COVID-19

      review-article
      1 , , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ,
      Medizinische Klinik, Intensivmedizin Und Notfallmedizin
      Springer Medizin
      Pneumonie, Point-of-Care Ultraschall (POCUS), Lunge, Ultraschall, SARS-CoV-2, Pneumonia, Point-of-Care Ultrasound (POCUS), Lung, Ultrasound, SARS-CoV-2

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Die Lungen- und Thoraxsonographie ist neben der Computertomographie und der Labordiagnostik eine weitere Untersuchungsmodalität bei der COVID-19-Erkrankung. Sie eignet sich zur Erweiterung der klinisch-körperlichen Untersuchung, weil sie sensitiv die Lungenoberfläche untersuchen kann. Diese verändert sich in den Sonogrammen mit bislang häufig beschriebenen Mustern bei Patienten mit COVID-19-Pneumonie und im Krankheitsverlauf. Deutsche Fachgesellschaften der klinischen Akut‑, Notfall- und Intensivmedizin sowie der Bildgebung, die mit der Versorgung von Patienten mit SARS-CoV-2-Infektion und der COVID-19-Erkrankung befasst sind, haben unter der Führung der Deutschen Gesellschaft Interdisziplinäre Notfall- und Akutmedizin e. V. (DGINA) Empfehlungen zur Lungen- und Thoraxsonographie abgestimmt. Das Dokument wurde über einen transparenten Prozess durch eine Expertengruppe und Delegierte der Fachgesellschaften erstellt. Quellen der ersten internationalen 200 Fallanalysen wurden zusammengefasst. Bislang häufig beschriebene thoraxsonographische Muster werden vorgestellt. Anhand von Fallbeispielen und multimedialen Inhalten soll das Dokument die Anwender unterstützen und Qualitätsmerkmale und das Potenzial der Thorax- und Lungensonographie aufzeigen. Die Deutsche Gesellschaft für Ultraschall in der Medizin e. V. (DEGUM) führt dazu eine Multizenterstudie durch (Studienkoordination TU München).

          Zusatzmaterial online

          Die Onlineversion dieses Beitrags (10.1007/s00063-020-00740-w) enthält begleitende Videos. Beitrag und Zusatzmaterial stehen Ihnen auf www.springermedizin.de zur Verfügung. Bitte geben Sie dort den Beitragstitel in die Suche ein, das Zusatzmaterial finden Sie beim Beitrag unter „Ergänzende Inhalte“.

          Translated abstract

          Lung and chest ultrasound are further examination modalities in addition to computed tomography and laboratory diagnostics in patients with COVID-19. It extends the clinical–physical examination because it can examine lung surface sensitively. Lung surface pattern changes have been found in sonograms of patients with COVID-19 pneumonia and during the course of the disease. German specialist societies of clinical acute, emergency and intensive care medicine as well as imaging, which are concerned with the care of patients with SARS-CoV‑2 infection and COVID-19, have coordinated recommendations for lung and thorax sonography. This document has been created within a transparent process, led by the German Society of Interdisciplinary Emergency and Acute Medicine e. V. (DGINA), and worked out by an expert panel and delegates from the societies. Sources of the first 200 cases were summarized. Typical thorax sonographic findings are presented. International sources or standards that were available in PubMed until May 24, 2020 were included. Using case studies and multimedia content, the document is intended to not only support users but also demonstrate quality features and the potential of chest and lung sonography. The German Society for Ultrasound in Medicine (DEGUM) is carrying out a multicenter study (study coordination at the TU Munich).

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Characteristics of Coronavirus Disease 2019 in China

          Abstract Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. Methods We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. Results The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. Conclusions During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

            To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases

              Background Chest CT is used for diagnosis of 2019 novel coronavirus disease (COVID-19), as an important complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose To investigate the diagnostic value and consistency of chest CT as compared with comparison to RT-PCR assay in COVID-19. Methods From January 6 to February 6, 2020, 1014 patients in Wuhan, China who underwent both chest CT and RT-PCR tests were included. With RT-PCR as reference standard, the performance of chest CT in diagnosing COVID-19 was assessed. Besides, for patients with multiple RT-PCR assays, the dynamic conversion of RT-PCR results (negative to positive, positive to negative, respectively) was analyzed as compared with serial chest CT scans for those with time-interval of 4 days or more. Results Of 1014 patients, 59% (601/1014) had positive RT-PCR results, and 88% (888/1014) had positive chest CT scans. The sensitivity of chest CT in suggesting COVID-19 was 97% (95%CI, 95-98%, 580/601 patients) based on positive RT-PCR results. In patients with negative RT-PCR results, 75% (308/413) had positive chest CT findings; of 308, 48% were considered as highly likely cases, with 33% as probable cases. By analysis of serial RT-PCR assays and CT scans, the mean interval time between the initial negative to positive RT-PCR results was 5.1 ± 1.5 days; the initial positive to subsequent negative RT-PCR result was 6.9 ± 2.3 days). 60% to 93% of cases had initial positive CT consistent with COVID-19 prior (or parallel) to the initial positive RT-PCR results. 42% (24/57) cases showed improvement in follow-up chest CT scans before the RT-PCR results turning negative. Conclusion Chest CT has a high sensitivity for diagnosis of COVID-19. Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic areas. A translation of this abstract in Farsi is available in the supplement. - ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
                Bookmark

                Author and article information

                Contributors
                daniel.kiefl@sana.de
                raoul.breitkreutz@fom.de
                Journal
                Med Klin Intensivmed Notfmed
                Med Klin Intensivmed Notfmed
                Medizinische Klinik, Intensivmedizin Und Notfallmedizin
                Springer Medizin (Heidelberg )
                2193-6218
                2193-6226
                12 October 2020
                : 1-14
                Affiliations
                [1 ]GRID grid.419837.0, Klinik für Interdisziplinäre Notfallmedizin, , Sana Klinikum Offenbach GmbH, ; Starkenburgring 66, 63069 Offenbach am Main, Deutschland
                [2 ]GRID grid.461820.9, ISNI 0000 0004 0390 1701, Schwerpunkt Pneumologie, , Universitätsklinikum Halle (Saale), ; Halle (Saale), Deutschland
                [3 ]GRID grid.459927.4, ISNI 0000 0000 8785 9045, Klinik für Akut- und Notfallmedizin, , St.-Antonius-Hospital gGmbH, ; Eschweiler, Deutschland
                [4 ]GRID grid.507576.6, ISNI 0000 0000 8636 2811, Klinik für Gastroenterologie, Pneumologie, Internistische Akut- und Intensivmedizin, , München Klinik Harlaching, ; München, Deutschland
                [5 ]Klinik für Thoraxchirurgie, Florence-Nightingale-Krankenhaus der Kaiserswerther Diakonie, Düsseldorf, Deutschland
                [6 ]Zentrale interdisziplinäre Notaufnahme und Aufnahmebereich, Florence-Nightingale-Krankenhaus der Kaiserswerther Diakonie, Düsseldorf, Deutschland
                [7 ]GRID grid.419835.2, ISNI 0000 0001 0729 8880, Klinik für Gastroenterologie, Endokrinologie und Zentrale Notaufnahme Nord, , Klinikum Nürnberg Nord, Paracelsus Medizinische Privatuniversität, ; Nürnberg, Deutschland
                [8 ]GRID grid.492781.1, Zentrale Notaufnahme, , Klinikum Frankfurt Höchst, ; Höchst, Deutschland
                [9 ]GRID grid.418466.9, ISNI 0000 0004 0493 2307, Klinik für Herz- und Gefäßchirurgie, , Universitäts-Herzzentrum Freiburg – Bad Krozingen, ; Freiburg, Deutschland
                [10 ]Hausarztpraxis Dr. Schellhaas, Groß-Bieberau, Deutschland
                [11 ]GRID grid.459927.4, ISNI 0000 0000 8785 9045, Klinik für Innere Medizin und Internistische Intensivmedizin, , St.-Antonius-Hospital gGmbH, ; Eschweiler, Deutschland
                [12 ]GRID grid.419802.6, ISNI 0000 0001 0617 3250, Interdisziplinäre Notaufnahme, , Klinikum Bamberg, ; Bamberg, Deutschland
                [13 ]GRID grid.411984.1, ISNI 0000 0001 0482 5331, Interdisziplinäre Notaufnahme, , Universitätsmedizin Göttingen, ; Göttingen, Deutschland
                [14 ]Abteilung Anästhesie, Vulpius Klinik, Bad Rappenau, Deutschland
                [15 ]GRID grid.440250.7, Medizinische Klinik II, , St. Josefs-Hospital Wiesbaden GmbH, ; Wiesbaden, Deutschland
                [16 ]GRID grid.492033.f, ISNI 0000 0001 0058 5377, DEGUM Kursleiter Innere Medizin, Endosonographie, , Medizinische Klinik II, Klinikum Ingolstadt, ; Ingolstadt, Deutschland
                [17 ]GRID grid.440206.4, ISNI 0000 0004 1765 7498, Medizinische Klinik, , Klinikum Am Steinenberg, ; Reutlingen, Deutschland
                [18 ]GRID grid.415600.6, ISNI 0000 0004 0592 9783, Abteilung X (Anästhesie), , Bundeswehrkrankenhaus, ; Ulm, Deutschland
                [19 ]Interdisziplinäres Notfallzentrum, Trägergesellschaft Kliniken Aurich-Emden-Norden, Aurich-Emden-Norden, Deutschland
                [20 ]GRID grid.14778.3d, ISNI 0000 0000 8922 7789, Zentrale Notaufnahme, , Universitätsklinikum Düsseldorf, ; Düsseldorf, Deutschland
                [21 ]Medizinische Klinik A, Kardiologie, Angiologie, Nephrologie, internistische Intensivmedizin, Medizinische Hochschule Brandenburg, Campus Ruppiner Kliniken, Neuruppin, Deutschland
                [22 ]GRID grid.6936.a, ISNI 0000000123222966, Nephrologisches Ultraschalllabor, , TU München, ; München, Deutschland
                [23 ]Klinik und Poliklinik für Radiologie, Interdisziplinäres Ultraschallzentrum, Universität München, Klinikum Großhadern, München, Deutschland
                [24 ]Fachbereich/Institut f. Gesundheit & Soziales (IfGS), FOM Hochschule für Ökonomie & Management, Franklinstr. 52, 60486 Frankfurt am Main, Deutschland
                Article
                740
                10.1007/s00063-020-00740-w
                7548535
                33044655
                e4fdaeb0-44a3-4638-95fc-8c6715f2da49
                © Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 26 July 2020
                : 25 August 2020
                Categories
                Leitlinien und Empfehlungen

                pneumonie,point-of-care ultraschall (pocus),lunge,ultraschall,sars-cov-2,pneumonia,point-of-care ultrasound (pocus),lung,ultrasound,sars-cov-2

                Comments

                Comment on this article