23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxytocin and Addiction: Potential Glutamatergic Mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, oxytocin (OXT) has been investigated for its potential therapeutic role in addiction. OXT has been found to diminish various drug-seeking and drug-induced behaviors. Although its behavioral effects are well-established, there is not much consensus on how this neuropeptide exerts its effects. Previous research has given thought to how dopamine (DA) may be involved in oxytocinergic mechanisms, but there has not been as strong of a focus on the role that glutamate (Glu) has. The glutamatergic system is critical for the processing of rewards and the disruption of glutamatergic projections produces the behaviors seen in drug addicts. We introduce the idea that OXT has direct effects on Glu transmission within the reward processing pathway. Thus, OXT may reduce addictive behaviors by restoring abnormal drug-induced changes in the glutamatergic system and in its interactions with other neurotransmitters. This review offers insight into the mechanisms through which a potentially viable therapeutic target, OXT, could be used to reduce addiction-related behaviors.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          The reward circuit: linking primate anatomy and human imaging.

          Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural basis of addiction: a pathology of motivation and choice.

            A primary behavioral pathology in drug addiction is the overpowering motivational strength and decreased ability to control the desire to obtain drugs. In this review the authors explore how advances in neurobiology are approaching an understanding of the cellular and circuitry underpinnings of addiction, and they describe the novel pharmacotherapeutic targets emerging from this understanding. Findings from neuroimaging of addicts are integrated with cellular studies in animal models of drug seeking. While dopamine is critical for acute reward and initiation of addiction, end-stage addiction results primarily from cellular adaptations in anterior cingulate and orbitofrontal glutamatergic projections to the nucleus accumbens. Pathophysiological plasticity in excitatory transmission reduces the capacity of the prefrontal cortex to initiate behaviors in response to biological rewards and to provide executive control over drug seeking. Simultaneously, the prefrontal cortex is hyperresponsive to stimuli predicting drug availability, resulting in supraphysiological glutamatergic drive in the nucleus accumbens, where excitatory synapses have a reduced capacity to regulate neurotransmission. Cellular adaptations in prefrontal glutamatergic innervation of the accumbens promote the compulsive character of drug seeking in addicts by decreasing the value of natural rewards, diminishing cognitive control (choice), and enhancing glutamatergic drive in response to drug-associated stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The brain reward circuitry in mood disorders.

              Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioural domains. A recent literature has identified important structural and functional alterations within the brain's reward circuitry--particularly in the ventral tegmental area-nucleus accumbens pathway--that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This Review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 February 2021
                March 2021
                : 22
                : 5
                : 2405
                Affiliations
                Department of Neuroscience, Trinity University, San Antonio, TX 78212, USA; msundar@ 123456trinity.edu (M.S.); dpatel2@ 123456trinity.edu (D.P.); zyoung@ 123456trinity.edu (Z.Y.)
                Author notes
                [* ]Correspondence: kleong@ 123456trinity.edu
                Author information
                https://orcid.org/0000-0002-6284-3658
                Article
                ijms-22-02405
                10.3390/ijms22052405
                7957657
                33673694
                e505bffc-5946-4b59-b82e-52d64c72b630
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 January 2021
                : 25 February 2021
                Categories
                Review

                Molecular biology
                oxytocin,glutamate,addiction,reward processing,dopamine
                Molecular biology
                oxytocin, glutamate, addiction, reward processing, dopamine

                Comments

                Comment on this article