23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paleocene–Eocene age glendonites from the Mid-Norwegian Margin – indicators of cold snaps in the hothouse?

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The International Ocean Discovery Program (IODP) Expedition 396 to the mid-Norwegian margin recovered > 1300 m of pristinely preserved, volcanic-ash-rich sediments deposited during the late Paleocene and early Eocene from close to the centre of the North Atlantic Igneous Province (NAIP). Remarkably, many of these cores contain glendonites, pseudomorphs after the purported cold-water mineral ikaite, from sediments dated to the late Paleocene and early Eocene. These time intervals span some of the hottest climates of the Cenozoic, including the Paleocene–Eocene Thermal Maximum (PETM). Global deep-ocean temperatures are not thought to have dropped below 10 ∘C at any point during this time, making the occurrence of supposedly cold-water (near-freezing temperature) glendonite pseudomorphs seemingly paradoxical. This study presents a detailed sedimentological, geochemical, and microscopic study of the IODP Exp. 396 glendonites and presents an updated model for the ikaite-to-calcite transformation for these glendonites. Specifically, we show that early diagenesis of basaltic ashes of the NAIP appear to have chemically promoted ikaite growth in the sediments in this region. Together with existing knowledge of late Paleocene and early Eocene glendonites from Svalbard to the north and early Eocene glendonites from Denmark to the south, these new glendonite finds possibly imply episodic, short-duration, and likely localized cooling in the Nordic Seas region, which may have been directly or indirectly linked to the emplacement of the NAIP.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics.

            • Record: found
            • Abstract: found
            • Article: found

            An astronomically dated record of Earth’s climate and its predictability over the last 66 million years

            Much of our understanding of Earth’s past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states—Hothouse, Warmhouse, Coolhouse, Icehouse—are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
              • Record: found
              • Abstract: found
              • Article: not found

              Release of methane from a volcanic basin as a mechanism for initial Eocene global warming

              A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Climate of the Past
                Clim. Past
                Copernicus GmbH
                1814-9332
                2024
                January 03 2024
                : 20
                : 1
                : 1-23
                Article
                10.5194/cp-20-1-2024
                e508c5c7-70a7-4aae-9d1a-e91bca09d0e3
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log