43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An open label study to determine the effects of an oral proteolytic enzyme system on whey protein concentrate metabolism in healthy males

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Current research suggests that protein intake of 1.5 – 2.8 g/kg/day (3.5 times the current recommended daily allowance) is effective and safe for individuals trying to increase or maintain lean muscle mass. To achieve these levels of daily protein consumption, supplementing the diet with processed whey protein concentrate (WPC) in liquid form has become a popular choice for many people. Some products have a suggested serving size as high as 50 g of protein. However, due to possible inhibition of endogenous digestive enzymes from over-processing and rapid small intestine transit time, the average amount of liquid WPC that is absorbed may be only 15 g. The combined effect of these factors may contribute to incomplete digestion, thereby limiting the absorption rate of protein before it reaches the ceacum and is eliminated as waste. The purpose of this study was to determine if Aminogen ®, a patented blend of digestive proteases from Aspergillus niger and Aspergillus oryzae, would significantly increase the in-vivo absorption rate of processed WPC over control values. It also investigated if any increase would be sufficient to significantly alter nitrogen (N2) balance and C-reactive protein (CRP) levels over control values as further evidence of increased WPC absorption rate.

          Methods

          Two groups of healthy male subjects were assigned a specified balanced diet before and after each of two legs of the study. Subjects served as their own controls. In the first leg each control group (CG) was dosed with 50 g of WPC following an overnight fast. Nine days later each test group (TG) was dosed following an overnight fast with 50 g of WPC containing either 2.5 g (A2.5) or 5 g (A5) of Aminogen ®. Blood samples were collected during each leg at 0 hr, 0.5 hr, 1 hr, 2 hr, 3 hr, 3.5 hr and 4 hr for amino acid (AA) and CRP analyses. The following 18 AAs were quantified: alanine, arginine, aspartic acid, cysteine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine. Urine was collected for 24 hours from 0 hr for total N2 analysis. Results are expressed as means ± SEM. All significance and power testing on results was done at a level of alpha = 0.05. Area under the concentration time curve (AUC) was calculated using the trapezoidal rule. One-way analysis of variance (ANOVA-1) was done between CGs, between TGs and between time points. One-way repeated measures analysis of variance (ANOVA-1-RM) was done to compare CGs and TGs. Two-way analysis of variance (ANOVA-2) was performed on total serum amino acid (TSAA) levels, urine N2 levels and CRP levels between each CG and TG.

          Results

          After baseline subtraction the mean AUC was significantly (p ≤ 0.05) greater in each TG compared the corresponding CG. Comparison of the mean AUC between each TG and each CG was not significantly different. Total serum amino acid (TSAA) levels were significantly greater in each TG compared the corresponding CG. They were also significantly different between each TG but not between each CG. All individual serum amino acid (ISAA) levels in TG-A2.5 except glycine, histidine, methionine and serine were significantly higher than in CG-A2.5 at 4 hr. All ISAA levels in TG-A5 except methionine and serine were significantly higher than in CG-A5 at 4 hr. The N2 balance was significantly higher in each TG compared to the corresponding CG, but not significantly different between each CG and between each TG. Significant differences in CRP levels are reported between each TG compared to the corresponding CG, but not significantly different between each TG and between each CG.

          Conclusion

          A patented blend of digestive proteases (Aminogen ®) increased the absorption rate of processed WPC over controls, as measured by statistically significant increases in AUC, TSAA levels, ISAA levels and N2 balance. Significant decreases in CRP levels and fluxes in AA levels are also reported.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review.

          For years, proponents of some fad diets have claimed that higher amounts of protein facilitate weight loss. Only in recent years have studies begun to examine the effects of high protein diets on energy expenditure, subsequent energy intake and weight loss as compared to lower protein diets. In this study, we conducted a systematic review of randomized investigations on the effects of high protein diets on dietary thermogenesis, satiety, body weight and fat loss. There is convincing evidence that a higher protein intake increases thermogenesis and satiety compared to diets of lower protein content. The weight of evidence also suggests that high protein meals lead to a reduced subsequent energy intake. Some evidence suggests that diets higher in protein result in an increased weight loss and fat loss as compared to diets lower in protein, but findings have not been consistent. In dietary practice, it may be beneficial to partially replace refined carbohydrate with protein sources that are low in saturated fat. Although recent evidence supports potential benefit, rigorous longer-term studies are needed to investigate the effects of high protein diets on weight loss and weight maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The digestion rate of protein is an independent regulating factor of postprandial protein retention.

            To evaluate the importance of protein digestion rate on protein deposition, we characterized leucine kinetics after ingestion of "protein" meals of identical amino acid composition and nitrogen contents but of different digestion rates. Four groups of five or six young men received an L-[1-13C]leucine infusion and one of the following 30-g protein meals: a single meal of slowly digested casein (CAS), a single meal of free amino acid mimicking casein composition (AA), a single meal of rapidly digested whey proteins (WP), or repeated meals of whey proteins (RPT-WP) mimicking slow digestion rate. Comparisons were made between "fast" (AA, WP) and "slow" (CAS, RPT-WP) meals of identical amino acid composition (AA vs. CAS, and WP vs. RPT-WP). The fast meals induced a strong, rapid, and transient increase of aminoacidemia, leucine flux, and oxidation. After slow meals, these parameters increased moderately but durably. Postprandial leucine balance over 7 h was higher after the slow than after the fast meals (CAS: 38 +/- 13 vs. AA: -12 +/- 11, P < 0.01; RPT-WP: 87 +/- 25 vs. WP: 6 +/- 19 micromol/kg, P < 0.05). Protein digestion rate is an independent factor modulating postprandial protein deposition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans.

              Soy proteins have been shown to result in lower postprandial nitrogen retention than milk proteins, but the mechanisms underlying these differences have not been elucidated. To investigate this question, we measured the postprandial kinetics of the appearance of individual (15)N-amino acids in the serum of healthy adults after the ingestion of either (15)N-soy (n = 8) or (15)N-milk proteins (n = 8) in a mixed single meal (46 kJ/kg). The kinetics of total and dietary amino acids (AA) in the peripheral circulation were characterized by an earlier and higher peak after soy protein ingestion. Dietary AA levels peaked at 2.5 h in the soy group vs. 3.9 h in the milk group (P < 0.02). This time interval difference between groups was associated with a faster transfer of dietary N into urea in the soy group (peak at 3 vs. 4.75 h in the milk group, P < 0.005) and a higher level of incorporation into the serum protein pool from 3 to 8 h after the soy meal. The dietary AA pattern in the peripheral blood closely reflected the dietary protein AA pattern. Postprandial glucose, insulin, and glucagon levels and profiles did not differ between groups. Soy AA were digested more rapidly and were directed toward both deamination pathways and liver protein synthesis more than milk AA. We conclude that differences in the metabolic postprandial fates of soy and milk proteins are due mainly to differences in digestion kinetics; however, the AA composition of dietary proteins may also play a role.
                Bookmark

                Author and article information

                Journal
                J Int Soc Sports Nutr
                Journal of the International Society of Sports Nutrition
                BioMed Central
                1550-2783
                2008
                24 July 2008
                : 5
                : 10
                Affiliations
                [1 ]Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, University of Yaounde I, Careroon
                [2 ]Gateway Health Alliances, Inc., Fairfield, CA 94534, USA
                [3 ]Triarco Industries, Inc. 400 Hamburg Turnpike, Wayne, NJ 07418, USA
                Article
                1550-2783-5-10
                10.1186/1550-2783-5-10
                2500001
                18652668
                e5213fa7-7b00-401e-81d6-5db1de3b40ac
                Copyright © 2008 Oben et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 March 2008
                : 24 July 2008
                Categories
                Research Article

                Sports medicine
                Sports medicine

                Comments

                Comment on this article