46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview

          In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Platelet secretion: From haemostasis to wound healing and beyond

            Upon activation, platelets secrete more than 300 active substances from their intracellular granules. Platelet dense granule components, such as ADP and polyphosphates, contribute to haemostasis and coagulation, but also play a role in cancer metastasis. α-Granules contain multiple cytokines, mitogens, pro- and anti-inflammatory factors and other bioactive molecules that are essential regulators in the complex microenvironment of the growing thrombus but also contribute to a number of disease processes. Our understanding of the molecular mechanisms of secretion and the genetic regulation of granule biogenesis still remains incomplete. In this review we summarise our current understanding of the roles of platelet secretion in health and disease, and discuss some of the hypotheses that may explain how platelets may control the release of its many secreted components in a context-specific manner, to allow platelets to play multiple roles in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophils scan for activated platelets to initiate inflammation.

              Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                16 July 2018
                2018
                : 6
                : 99
                Affiliations
                Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen , Tübingen, Germany
                Author notes

                Edited by: Nihal Engin Vrana, Protip Medical, France

                Reviewed by: Giovann Vozzi, Università degli Studi di Pisa, Italy; Elif Vardar, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland

                *Correspondence: Meltem Avci-Adali meltem.avci-adali@ 123456uni-tuebingen.de

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2018.00099
                6054932
                30062094
                e52ee0c5-1ea4-484e-96d5-b96c9e88ce4d
                Copyright © 2018 Weber, Steinle, Golombek, Hann, Schlensak, Wendel and Avci-Adali.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 May 2018
                : 26 June 2018
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 113, Pages: 11, Words: 8602
                Categories
                Bioengineering and Biotechnology
                Review

                hemocompatibility,blood contact,biomaterials,coagulation,complement system

                Comments

                Comment on this article