90
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) are a family of small non-coding RNA molecules of about 20–23 nucleotides in length, which negatively regulate protein-coding genes at post-transcriptional level. Using a stem-loop real-time-PCR method, we quantified the expression levels of 270 human miRNAs in 13 nasopharyngeal carcinoma (NPC) samples and 9 adjacent normal tissues, and identified 35 miRNAs whose expression levels were significantly altered in NPC samples. Several known oncogenic miRNAs, including miR-17-92 cluster and miR-155, are among the miRNAs upregulated in NPC. Tumour suppressive miRNAs, including miR-34 family, miR-143, and miR-145, are significantly downregulated in NPC. To explore the roles of these dysregulated miRNAs in the pathogenesis of NPC, a computational analysis was performed to predict the pathways collectively targeted by the 22 significantly downregulated miRNAs. Several biological pathways that are well characterised in cancer are significantly targeted by the downregulated miRNAs. These pathways include TGF-Wnt pathways, G1-S cell cycle progression, VEGF signalling pathway, apoptosis and survival pathways, and IP3 signalling pathways. Expression levels of several predicted target genes in G1-S progression and VEGF signalling pathways were elevated in NPC tissues and showed inverse correlation with the down-modulated miRNAs. These results indicate that these downregulated miRNAs coordinately regulate several oncogenic pathways in NPC.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of mammalian microRNA targets.

            MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced accumulation of specific microRNAs in colorectal neoplasia.

              Short non-coding RNAs are known to regulate cellular processes including development, heterochromatin formation, and genomic stability in eukaryotes. Given the impact of these processes on cellular identity, a study was undertaken to investigate possible changes in microRNA (miRNA) levels during tumorigenesis. A total of 28 different miRNA sequences was identified in a colonic adenocarcinoma and normal mucosa, including 3 novel sequences and a further 7 that had previously been cloned only from mice. Human homologues of murine miRNA sequences, miR-143 and miR-145, consistently display reduced steady-state levels of the mature miRNA at the adenomatous and cancer stages of colorectal neoplasia.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                17 March 2009
                24 March 2009
                : 100
                : 6
                : 1002-1011
                Affiliations
                [1 ]Genomic Core Laboratory, Molecular Medicine Research Center, Chang Gung University Taiwan, Republic of China
                [2 ]Department of Otolaryngology, Chang Gung Memorial Hospital at Lin-Kou, Taoyuan Taiwan, Republic of China
                Author notes
                [* ]Author for correspondence: sjchen@ 123456mail.cgu.edu.tw
                Article
                6604948
                10.1038/sj.bjc.6604948
                2661776
                19293812
                e5303153-bf29-473a-962b-115b3711e21b
                Copyright 2009, Cancer Research UK
                History
                : 14 October 2008
                : 27 January 2009
                : 27 January 2009
                Categories
                Genetics and Genomics

                Oncology & Radiotherapy
                nasopharyngeal carcinoma,pathway,target,microrna
                Oncology & Radiotherapy
                nasopharyngeal carcinoma, pathway, target, microrna

                Comments

                Comment on this article