13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamics of Self-assembly of Model Viral Capsids in the Presence of a Fluctuating Membrane

      research-article
      ,
      The Journal of Physical Chemistry. B
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A coarse-grained computational model is used to investigate the effect of a fluctuating fluid membrane on the dynamics of patchy-particle assembly into virus capsid-like cores. Results from simulations for a broad range of parameters are presented, showing the effect of varying interaction strength, membrane stiffness, and membrane viscosity. Furthermore, the effect of hydrodynamic interactions is investigated. Attraction to a membrane may promote assembly, including for subunit interaction strengths for which it does not occur in the bulk, and may also decrease single-core assembly time. The membrane budding rate is strongly increased by hydrodynamic interactions. The membrane deformation rate is important in determining the finite-time yield. Higher rates may decrease the entropic penalty for assembly and help guide subunits toward each other but may also block partial cores from being completed. For increasing subunit interaction strength, three regimes with different effects of the membrane are identified.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Dicke Quantum Phase Transition with a Superfluid Gas in an Optical Cavity

            A phase transition describes the sudden change of state in a physical system, such as the transition between a fluid and a solid. Quantum gases provide the opportunity to establish a direct link between experiment and generic models which capture the underlying physics. A fundamental concept to describe the collective matter-light interaction is the Dicke model which has been predicted to show an intriguing quantum phase transition. Here we realize the Dicke quantum phase transition in an open system formed by a Bose-Einstein condensate coupled to an optical cavity, and observe the emergence of a self-organized supersolid phase. The phase transition is driven by infinitely long-ranged interactions between the condensed atoms. These are induced by two-photon processes involving the cavity mode and a pump field. We show that the phase transition is described by the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid phase is associated with a spontaneously broken spatial symmetry. The boundary of the phase transition is mapped out in quantitative agreement with the Dicke model. The work opens the field of quantum gases with long-ranged interactions, and provides access to novel quantum phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipid droplet is an important organelle for hepatitis C virus production.

              The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
                Bookmark

                Author and article information

                Journal
                J Phys Chem B
                J Phys Chem B
                jp
                jpcbfk
                The Journal of Physical Chemistry. B
                American Chemical Society
                1520-6106
                1520-5207
                05 June 2013
                11 July 2013
                : 117
                : 27
                : 8283-8292
                Affiliations
                [1]Faculty of Physics, University of Vienna , Boltzmanngasse 5, A-1090 Vienna, Austria
                Author notes
                Article
                10.1021/jp4037099
                3711127
                23734751
                e5359636-bb4e-4c07-b402-e2cca944ac22
                Copyright © 2013 American Chemical Society
                History
                : 15 April 2013
                : 05 June 2013
                Categories
                Article
                Custom metadata
                jp4037099
                jp-2013-037099

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article