14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Contrasting size evolution in marine and freshwater diatoms

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diatoms are key players in the global carbon cycle and most aquatic ecosystems. Their cell sizes impact carbon sequestration and energy transfer to higher trophic levels. We report fundamental differences in size distributions of marine and freshwater diatoms, with marine diatoms significantly larger than freshwater species. An evolutionary game theoretical model with empirical allometries of growth and nutrient uptake shows that these differences can be explained by nitrogen versus phosphorus limitation, nutrient fluctuations and mixed layer depth differences. Constant and pulsed phosphorus supply select for small sizes, as does constant nitrogen supply. In contrast, intermediate frequency nitrogen pulses common in the ocean select for large sizes or the evolutionarily stable coexistence of large and small sizes. Size-dependent sinking interacts with mixed layer depth (MLD) to further modulate optimal sizes, with smaller sizes selected for by strong sinking and shallow MLD. In freshwaters, widespread phosphorus limitation, together with strong sinking and shallow MLD produce size distributions with smaller range, means and upper values, compared with the ocean. Shifting patterns of nutrient limitation and mixing may alter diatom size distributions, affecting global carbon cycle and the structure and functioning of aquatic ecosystems.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.

          The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Trait-Based Community Ecology of Phytoplankton

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 24 2009
                February 24 2009
                February 06 2009
                : 106
                : 8
                : 2665-2670
                Article
                10.1073/pnas.0810891106
                2650323
                19202058
                e5432062-0ecc-43c2-917b-f4bca6fba982
                © 2009

                http://www.pnas.org/site/misc/userlicense.xhtml


                Comments

                Comment on this article