49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of a mitotic Rac-GEF, Trio, that counteracts MgcRacGAP function during cytokinesis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inactivation of Rac1 by MgcRacGAP at the cleavage plane is essential to ensure cytokinesis. Trio activates Rac1 in dividing cells, and its depletion rescues the cytokinesis failure induced by MgcRacGAP. This work identifies for the first time a GEF-activating Rac1 in dividing cells that counteracts MgcRacGAP function in cytokinesis.

          Abstract

          The Rho GTPases RhoA and Rac1 function as master regulators of cytokinesis by controlling the actomyosin cytoskeleton. RhoA and Rac1 have to be respectively activated and inactivated at the division plane for cytokinesis to occur properly. The inactivation of Rac1 at the cleavage furrow is controlled by MgcRacGAP. However, the guanine-nucleotide exchange factor (GEF) that activates Rac1 during cell division remains unknown. Here, using a siRNA screening approach in HeLa cells, we identify Trio as a mitotic GEF of Rac1. We demonstrate that Trio controls Rac1 activation and subsequent F-actin remodeling in dividing cells. Moreover, Trio depletion specifically rescues the cytokinesis failure induced by MgcRacGAP depletion. Of importance, we demonstrate that this rescue is mediated by the Trio-Rac1 pathway, using GEF-dead mutants of Trio and a specific inhibitor of Rac1 activation by Trio. Overall this work identifies for the first time a GEF controlling Rac1 activation in dividing cells that counteracts MgcRacGAP function in cytokinesis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          An ECT2–centralspindlin complex regulates the localization and function of RhoA

          In anaphase, the spindle dictates the site of contractile ring assembly. Assembly and ingression of the contractile ring involves activation of myosin-II and actin polymerization, which are triggered by the GTPase RhoA. In many cells, the central spindle affects division plane positioning via unknown molecular mechanisms. Here, we dissect furrow formation in human cells and show that the RhoGEF ECT2 is required for cortical localization of RhoA and contractile ring assembly. ECT2 concentrates on the central spindle by binding to centralspindlin. Depletion of the centralspindlin component MKLP1 prevents central spindle localization of ECT2; however, RhoA, F-actin, and myosin still accumulate on the equatorial cell cortex. Depletion of the other centralspindlin component, CYK-4/MgcRacGAP, prevents cortical accumulation of RhoA, F-actin, and myosin. CYK-4 and ECT2 interact, and this interaction is cell cycle regulated via ECT2 phosphorylation. Thus, central spindle localization of ECT2 assists division plane positioning and the CYK-4 subunit of centralspindlin acts upstream of RhoA to promote furrow assembly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activity of Rho-family GTPases during cell division as visualized with FRET-based probes

            Rho-family GTPases regulate many cellular functions. To visualize the activity of Rho-family GTPases in living cells, we developed fluorescence resonance energy transfer (FRET)–based probes for Rac1 and Cdc42 previously (Itoh, R.E., K. Kurokawa, Y. Ohba, H. Yoshizaki, N. Mochizuki, and M. Matsuda. 2002. Mol. Cell. Biol. 22:6582–6591). Here, we added two types of probes for RhoA. One is to monitor the activity balance between guanine nucleotide exchange factors and GTPase-activating proteins, and another is to monitor the level of GTP-RhoA. Using these FRET probes, we imaged the activities of Rho-family GTPases during the cell division of HeLa cells. The activities of RhoA, Rac1, and Cdc42 were high at the plasma membrane in interphase, and decreased rapidly on entry into M phase. From after anaphase, the RhoA activity increased at the plasma membrane including cleavage furrow. Rac1 activity was suppressed at the spindle midzone and increased at the plasma membrane of polar sides after telophase. Cdc42 activity was suppressed at the plasma membrane and was high at the intracellular membrane compartments during cytokinesis. In conclusion, we could use the FRET-based probes to visualize the complex spatio-temporal regulation of Rho-family GTPases during cell division.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytokinesis: welcome to the Rho zone.

              Cytokinesis follows nuclear division and generates two distinct daughter cells, each replete with a full complement of the genome and cytoplasmic organelles. Members of the Rho family of GTPases are crucial regulators of this process in a wide variety of species. In many cell types, cytokinesis is mediated by a discretely localized contractile ring that is rich in actin and myosin. In this article (which is part of the Cytokinesis series), we review recent studies in animal cells that have shown that local assembly of the contractile ring is mediated by a discrete pool of GTP-bound, active RhoA. Advances in detecting the active pool of RhoA have allowed insights into the mechanisms and the molecules that promote the accumulation of active RhoA at the correct time and place in the cell.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 December 2014
                : 25
                : 25
                : 4063-4071
                Affiliations
                [1] aSignaling and Cytoskeleton Dynamics Group, University of Montpellier, 34293 Montpellier, France
                [2] bCentrosome, Cilia and Pathology Group, CRBM-CNRS, University of Montpellier, 34293 Montpellier, France
                Columbia University
                Author notes
                1Address correspondence to: Anne Debant ( anne.debant@ 123456crbm.cnrs.fr ), Bénédicte Delaval ( benedicte.delaval@ 123456crbm.cnrs.fr ).
                Article
                E14-06-1153
                10.1091/mbc.E14-06-1153
                4263449
                25355950
                e546bcc2-b19c-446b-b0e4-afc531f7e376
                © 2014 Cannet et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 25 June 2014
                : 17 September 2014
                : 14 October 2014
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article