17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Translational medicine as a new clinical tool and application which improves metabolic diseases: perspectives from 2012 Sino-American symposium on clinical and translational medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because of the economic growth and changes in lifestyle, metabolic diseases have become a major public health problem, which impose heavy economic burdens on individuals, families and health systems. However, its precise mediators and mechanisms remain to be fully understood. Clinical translational medicine (CTM) is an emerging area comprising multidisciplinary research from basic science to medical applications and as a new tool to improve human health by reducing disease incidence, morbidity and mortality. It can bridge knowledge of metabolic diseases processes, gained by in vitro and experimental animal models, with the disease pathways found in humans, further to identify their susceptibility genes and enable patients to achieve personalized medicament treatment. Thus, we have the reasons to believe that CTM will play even more roles in the development of new diagnostics, therapies, healthcare, and policies and the Sino-American Symposium on Clinical and Translational Medicine (SAS-CTM) will become a more and more important platform for exchanging ideas on clinical and translational research and entails a close collaboration among hospital, academia and industry.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found

          Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.

          Increased glutaminolysis is now recognized as a key feature of the metabolic profile of cancer cells, along with increased aerobic glycolysis (the Warburg effect). In this review, we discuss the roles of glutamine in contributing to the core metabolism of proliferating cells by supporting energy production and biosynthesis. We address how oncogenes and tumor suppressors regulate glutamine metabolism and how cells coordinate glucose and glutamine as nutrient sources. Finally, we highlight the novel therapeutic and imaging applications that are emerging as a result of our improved understanding of the role of glutamine metabolism in cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer.

            Obesity, especially of the abdominal type, is a health problem that constitutes metabolic syndrome and increases the incidence of various diseases, including diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Various mechanisms linking obesity to these associated diseases have been postulated. One candidate is oxidative stress, which has been implicated in vascular complications of diabetes and in pancreatic -cell failure in diabetes. Notably, obese people without diabetes also display elevated levels of systemic oxidative stress. In addition, levels of oxidative stress are increased in the adipose tissue in obese mice. Treating obese mice with antioxidant agents attenuates the development of diabetes. In 3T3-L1 adipocytes, increases in reactive oxygen species (ROS) occur with lipid accumulation; the addition of free fatty acids elevates ROS generation further. Thus, adipose tissue represents an important source of ROS; ROS may contribute to the development of obesity-associated insulin resistance and type 2 diabetes. Moreover, the levels of oxidative stress present in several other types of cells or tis-sues, including those in the brain, arterial walls, and tumors, have been implicated in the pathogenesis associated with hypertension, atherosclerosis, and cancer. The increased levels of systemic oxidative stress that occur in obesity may contribute to the obesity-associated development of these diseases. © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MicroRNAs in inflammatory lung disease - master regulators or target practice?

              MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Clin Transl Med
                Clin Transl Med
                Clinical and Translational Medicine
                Springer
                2001-1326
                2014
                10 February 2014
                : 3
                : 2
                Affiliations
                [1 ]Department of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
                [2 ]Hospital Universitario Infantil Niño Jesús, Madrid, Spain
                Article
                2001-1326-3-2
                10.1186/2001-1326-3-2
                3996143
                24512772
                e548ad05-e14b-4ab0-b7e7-b97fa295d8fb
                Copyright © 2014 Shi et al.; licensee Springer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 December 2013
                : 5 February 2014
                Categories
                Review

                Medicine
                metabolic diseases,clinical translational medicine,hepatotoxicity,colorectal cancer,obesity,type 2 diabetes mellitus,micrornas

                Comments

                Comment on this article