0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antioxidant properties of drugs used in Type 2 diabetes management: could they contribute to, confound or conceal effects of antioxidant therapy?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Objectives: This is a narrative review, investigating the antioxidant properties of drugs used in the management of diabetes, and discusses whether these antioxidant effects contribute to, confound, or conceal the effects of antioxidant therapy.

          Methods: A systematic search for articles reporting trials, or observational studies on the antioxidant effect of drugs used in the treatment of diabetes in humans or animals was performed using Web of Science, PubMed, and Ovid. Data were extracted, including data on a number of subjects, type of treatment (and duration) received, and primary and secondary outcomes. The primary outcomes were reporting on changes in biomarkers of antioxidants concentrations and secondary outcomes were reporting on changes in biomarkers of oxidative stress.

          Results: Diabetes Mellitus is a disease characterized by increased oxidative stress. It is often accompanied by a spectrum of other metabolic disturbances, including elevated plasma lipids, elevated uric acid, hypertension, endothelial dysfunction, and central obesity. This review shows evidence that some of the drugs in diabetes management have both in vivo and in vitro antioxidant properties through mechanisms such as scavenging free radicals and upregulating antioxidant gene expression.

          Conclusion: Pharmaceutical agents used in the treatment of type 2 diabetes has been shown to exert an antioxidant effect..

          Related collections

          Most cited references142

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in prevalence of diabetes in Asian countries.

          Diabetes is a major lifestyle disorder, the prevalence of which is increasing globally. Asian countries contribute to more than 60% of the world's diabetic population as the prevalence of diabetes is increasing in these countries. Socio-economic growth and industrialization are rapidly occurring in many of these countries. The urban-rural divide in prevalence is narrowing as urbanization is spreading widely, adversely affecting the lifestyle of populations. Asians have a strong ethnic and genetic predisposition for diabetes and have lower thresholds for the environmental risk factors. As a result, they develop diabetes at a younger age and at a lower body mass index and waist circumference when compared with the Western population. The adverse effect of physical inactivity and fatty food are manifested as the increasing rate of overweightness and obesity, even among children. The health care budgets for the disease management are meager and the health care outcome is far from the optimum. As a result, complications of diabetes are common and the economic burden is very high, especially among the poor strata of the society. National endeavors are urgently needed for early diagnosis, effective management and for primary prevention of diabetes. This editorial aims to highlight the rising trend in prevalence of diabetes in Asia, its causative factors and the urgent need to implement national strategies for primary prevention of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of oxidative stress and antioxidants in diabetic complications.

            Diabetes is considered to be one of the most common chronic diseases worldwide. There is a growing scientific and public interest in connecting oxidative stress with a variety of pathological conditions including diabetes mellitus (DM) as well as other human diseases. Previous experimental and clinical studies report that oxidative stress plays a major role in the pathogenesis and development of complications of both types of DM. However, the exact mechanism by which oxidative stress could contribute to and accelerate the development of complications in diabetic mellitus is only partly known and remains to be clarified. On the one hand, hyperglycemia induces free radicals; on the other hand, it impairs the endogenous antioxidant defense system in patients with diabetes. Endogenous antioxidant defense mechanisms include both enzymatic and non-enzymatic pathways. Their functions in human cells are to counterbalance toxic reactive oxygen species (ROS). Common antioxidants include the vitamins A, C, and E, glutathione (GSH), and the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GRx). This review describes the importance of endogenous antioxidant defense systems, their relationship to several pathophysiological processes and their possible therapeutic implications in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current views on type 2 diabetes.

              Type 2 diabetes mellitus (T2DM) affects a large population worldwide. T2DM is a complex heterogeneous group of metabolic disorders including hyperglycemia and impaired insulin action and/or insulin secretion. T2DM causes dysfunctions in multiple organs or tissues. Current theories of T2DM include a defect in insulin-mediated glucose uptake in muscle, a dysfunction of the pancreatic beta-cells, a disruption of secretory function of adipocytes, and an impaired insulin action in liver. The etiology of human T2DM is multifactorial, with genetic background and physical inactivity as two critical components. The pathogenesis of T2DM is not fully understood. Animal models of T2DM have been proved to be useful to study the pathogenesis of, and to find a new therapy for, the disease. Although different animal models share similar characteristics, each mimics a specific aspect of genetic, endocrine, metabolic, and morphologic changes that occur in human T2DM. The purpose of this review is to provide the recent progress and current theories in T2DM and to summarize animal models for studying the pathogenesis of the disease.
                Bookmark

                Author and article information

                Journal
                Redox Rep
                Redox Rep
                YRER
                yrer20
                Redox Report : Communications in Free Radical Research
                Taylor & Francis
                1351-0002
                1743-2928
                2018
                17 May 2017
                : 23
                : 1
                : 1-24
                Affiliations
                [a ]Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong , Pokfulam, Hong Kong SAR
                [b ]Faculty of Veterinary and Agricultural Sciences, The University of Melbourne , Melbourne, Australia
                [c ]Faculty of Health and Social Sciences, School of Nursing, The Hong Kong Polytechnic University , Kowloon, Hong Kong SAR
                Author notes
                [CONTACT ] Siu Wai CHOI htswchoi@ 123456hku.hk Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong , Room 432, 4/F, Block K, Pokfulam, Hong Kong SAR
                Article
                1324381
                10.1080/13510002.2017.1324381
                6748682
                28514939
                e54a6bb1-3697-4916-9303-b809403f97cf
                © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 31, Tables: 6, Equations: 0, References: 160, Pages: 24
                Categories
                Review Article

                Inorganic & Bioinorganic chemistry
                antioxidants,diabetes,drug management,vitamin c,vitamin e
                Inorganic & Bioinorganic chemistry
                antioxidants, diabetes, drug management, vitamin c, vitamin e

                Comments

                Comment on this article

                scite_

                Similar content150

                Cited by16

                Most referenced authors2,120