+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ovarian Aging: Molecular Mechanisms and Medical Management


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This is a short review of the basic molecular mechanisms of ovarian aging, written with a particular focus on the use of this data to improve the diagnostic and therapeutic protocols both for women affected by physiological (age-related) ovarian decay and for those suffering premature ovarian insufficiency. Ovarian aging has a genetic basis that conditions the ovarian activity via a plethora of cell-signaling pathways that control the functions of different types of cells in the ovary. There are various factors that can influence these pathways so as to reduce their efficiency. Oxidative stress, often related to mitochondrial dysfunction, leading to the apoptosis of ovarian cells, can be at the origin of vicious circles in which the primary cause feeds back other abnormalities, resulting in an overall decline in the ovarian activity and in the quantity and quality of oocytes. The correct diagnosis of the molecular mechanisms involved in ovarian aging can serve to design treatment strategies that can slow down ovarian decay and increase the quantity and quality of oocytes that can be obtained for an in vitro fertilization attempt. The available treatment options include the use of antioxidants, melatonin, growth hormones, and mitochondrial therapies. All of these treatments have to be considered in the context of each couple’s history and current clinical condition, and a customized (patient-tailored) treatment protocol is to be elaborated.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Human gene expression first occurs between the four- and eight-cell stages of preimplantation development.

          The earliest stages of development in most animals, including the few mammalian species that have been investigated, are regulated by maternally inherited information. Dependence on expression of the embryonic genome cannot be detected until the mid two-cell stage in the mouse, the four-cell stage in the pig (J. Osborn & C. Polge, personal communication), and the eight-cell stage in the sheep. Information about the timing of activation of the embryonic genome in the human is of relevance not only to the therapeutic practice of in vitro fertilization and embryo transfer (IVF), but more importantly for the successful development of techniques for the preimplantation diagnosis of certain inherited genetic diseases. We describe here changes in the pattern of polypeptides synthesized during the pre-implantation stages of human development, and demonstrate that some of the major qualitative changes which occur between the four- and eight-cell stages are dependent on transcription. In addition, it appears that cleavage is not sensitive to transcriptional inhibition until after the four-cell stage.
            • Record: found
            • Abstract: found
            • Article: not found

            The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening.

            To determine the relationship between the age of the female partner and the prevalence and nature of human embryonic aneuploidy. Retrospective. Academic. Trophectoderm biopsies. Comprehensive chromosomal screening performed on patients with blastocysts available for biopsy. Evaluation of the impact of maternal age on the prevalence of aneuploidy, the probability of having no euploid embryos within a cohort, the complexity of aneuploidy as gauged by the number of aneuploid chromosomes, and the trisomy/monosomy ratio. Aneuploidy increased predictably after 26 years of age. A slightly increased prevalence was noted at younger ages, with >40% aneuploidy in women 23 years and under. The no euploid embryo rate was lowest (2% to 6%) in women aged 26 to 37, was 33% at age 42, and was 53% at age 44. Among the biopsies with aneuploidy, 64% involved a single chromosome, 20% two chromosomes, and 16% three chromosomes, with the proportion of more complex aneuploidy increasing with age. Finally, the trisomy/monosomy ratio approximated 1 and increased minimally with age. The lowest risk for embryonic aneuploidy was between ages 26 and 30. Both younger and older age groups had higher rates of aneuploidy and an increased risk for more complex aneuploidies. The overall risk did not measurably change after age 43. Trisomies and monosomies are equally prevalent. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              The variability of female reproductive ageing.

              The delay in childbearing is an important societal change contributing to an increasing incidence of subfertility. The prevailing concept of female reproductive ageing assumes that the decline of both quantity and quality of the oocyte/follicle pool determines an age-dependent loss of female fertility. There is an apparent discrepancy between the ability to maintain a regular ovulatory cycle pattern and the several years earlier cessation of female fertility. This latter is largely explained by an age-related increase of meiotic non-disjunction leading to chromosomal aneuploidy and early pregnancy loss, such that most embryos from women > or =40 years old are chromosomally abnormal and rarely develop further. The final stage of reproductive ageing-the occurrence of menopause-shows a huge variation between women. Age at last birth in natural fertility populations, which marks the end of female fertility, shows an identically wide variation as age at menopause, but occurs on average 10 years earlier. Given the high heritability for age at menopause, the variation in both age of menopause and last birth are probably under genetic control by the same set of genes. Some of those genes must carry heritable variants which modulate the rate of ovarian ageing and give rise to the wide age variations for the various phases of reproductive ageing.

                Author and article information

                Role: Academic Editor
                Int J Mol Sci
                Int J Mol Sci
                International Journal of Molecular Sciences
                29 January 2021
                February 2021
                : 22
                : 3
                MARGen Clinic, 18006 Granada, Spain; biologas@ 123456clinicamargen.com (M.G.-L.); mendozatesarik@ 123456gmail.com (R.M.-T.)
                Author notes
                [* ]Correspondence: jtesarik@ 123456clinicamargen.com ; Tel.: +34-606-376992
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).


                Molecular biology
                ovarian aging,age-related ovarian decay,premature ovarian insufficiency,genetics of ovarian aging,signaling pathways in ovarian aging,oxidative stress,mitochondrial function,mitochondrial therapy,apoptosis,melatonin,growth hormone


                Comment on this article