5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This experiment uses environmental challenges associated with global climate change to assess the stress response of mangrove fish (bonefish, checkered puffer, and yellowfin mojarra) in two seasons. Identifying species that are most susceptible to environmental stressors will enhance our ability to predict change in ecosystems.

          Abstract

          Climate change due to anthropogenic activity will continue to alter the chemistry of the oceans. Future climate scenarios indicate that sub-tropical oceans will become more acidic, and the temperature and salinity will increase relative to current conditions. A large portion of previous work has focused on how future climate scenarios may impact shell-forming organisms and coral reef fish, with little attention given to fish that inhabit nearshore habitats; few studies have examined multiple challenges concurrently. The purpose of this study was to quantify the blood-based physiological response of nearshore fishes to a suite of seawater conditions associated with future climate change. Fish were exposed to an acute (30 min) increase in salinity (50 ppt), acidity (decrease in pH by 0.5 units) or temperature (7–10°C), or temperature and acidity combined, and held in these conditions for 6 h. Their physiological responses were compared across seasons (i.e. summer vs. winter). Bonefish ( Albula vulpes) exposed to environmental challenges in the summer experienced a suite of blood-based osmotic and ionic disturbances relative to fish held in ambient conditions, with thermal challenges (particularly in the summer) being the most challenging. Conversely, no significant treatment effects were observed for yellowfin mojarra ( Gerres cinereus) or checkered puffer ( Sphoeroides testudineus) in either season. Together, results from this study demonstrate that acute climate-induced changes to thermal habitat will be the most challenging for sub-tropical fishes (particularly in the summer) relative to salinity and pH stressors, but significant variation across species exists.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecology. Physiology and climate change.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste.

            The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why tropical forest lizards are vulnerable to climate warming.

              Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.
                Bookmark

                Author and article information

                Journal
                Conserv Physiol
                Conserv Physiol
                conphys
                conphys
                Conservation Physiology
                Oxford University Press
                2051-1434
                2014
                29 July 2014
                : 2
                : 1
                : cou028
                Affiliations
                [1 ]Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Avenue, MC 047, Urbana, IL 61801, USA
                [2 ]Flats Ecology and Conservation Program, Cape Eleuthera Institute, Eleuthera, The Bahamas
                Author notes
                [* ] Corresponding author: Tel: +1 609 945 0710 ext. 6001. Email: aaronshultz@ 123456ceibahamas.org

                Editor: Steven Cooke

                Article
                cou028
                10.1093/conphys/cou028
                4806733
                27293649
                e561f8ed-3f82-454b-b64e-408845ad4e25
                © The Author 2014. Published by Oxford University Press and the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 February 2014
                : 29 May 2014
                : 7 June 2014
                Page count
                Pages: 12
                Categories
                Research Articles

                blood chemistry,multiple stressors,nearshore,physiological response,stress,temperature

                Comments

                Comment on this article