64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dextran induces differentiation of circulating endothelial progenitor cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial progenitor cells (EPCs) have been demonstrated to be effective for the treatment of cardiovascular diseases. However, the differentiation process from circulation to adhesion has not been clarified because circulating EPCs rarely attached to dishes in EPC cultures previously. Here we investigated whether immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran. When floating‐circulating EPCs derived from ex vivo expanded human cord blood were cultured with 5% and 10% dextran, they attached to fibronectin‐coated dishes and grew exponentially. The bioactivities of adhesion, proliferation, migration, tube formation, and differentiated type of EPC colony formation increased in EPCs exposed to dextran. The surface protein expression rate of the endothelial markers vascular endothelial growth factor (VEGF)‐R1/2, VE‐cadherin, Tie2, ICAM1, VCAM1, and integrin αv/β3 increased in EPCs exposed to dextran. The mRNA levels of VEGF‐R1/2, VE‐cadherin, Tie2, endothelial nitric oxide synthase, MMP9, and VEGF increased in EPCs treated with dextran. Those of endothelium‐related transcription factors ID1/2, FOXM1, HEY1, SMAD1, FOSL1, NFkB1, NRF2, HIF1A, EPAS1 increased in dextran‐treated EPCs; however, those of hematopoietic‐ and antiangiogenic‐related transcription factors TAL1, RUNX1, c‐MYB, GATA1/2, ERG, FOXH1, HHEX, SMAD2/3 decreased in dextran‐exposed EPCs. Inhibitor analysis showed that PI3K/Akt, ERK1/2, JNK, and p38 signal transduction pathways are involved in the differentiation in response to dextran. In conclusion, dextran induces differentiation of circulating EPCs in terms of adhesion, migration, proliferation, and vasculogenesis. The differentiation mechanism in response to dextran is regulated by multiple signal transductions including PI3K/Akt, ERK1/2, JNK, and p38. These findings indicate that dextran is an effective treatment for EPCs in regenerative medicines.

          Abstract

          Circulating endothelial progenitor cells (EPCs) rarely attach to dishes. Here, we showed immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts.

          Id proteins may control cell differentiation by interfering with DNA binding of transcription factors. Here we show that targeted disruption of the dominant negative helix-loop-helix proteins Id1 and Id3 in mice results in premature withdrawal of neuroblasts from the cell cycle and expression of neural-specific differentiation markers. The Id1-Id3 double knockout mice also display vascular malformations in the forebrain and an absence of branching and sprouting of blood vessels into the neuroectoderm. As angiogenesis both in the brain and in tumours requires invasion of avascular tissue by endothelial cells, we examined the Id knockout mice for their ability to support the growth of tumour xenografts. Three different tumours failed to grow and/or metastasize in Id1+/- Id3-/- mice, and any tumour growth present showed poor vascularization and extensive necrosis. Thus, the Id genes are required to maintain the timing of neuronal differentiation in the embryo and invasiveness of the vasculature. Because the Id genes are expressed at very low levels in adults, they make attractive new targets for anti-angiogenic drug design.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Concise review: Circulating endothelial progenitor cells for vascular medicine.

            Endothelial progenitor cells (EPCs) have been isolated and shown to be effective in animal models of ischemia, and many groups involved in clinical trials have demonstrated that EPC therapy is safe and feasible for the treatment of critical limb ischemia and cardiovascular diseases. However, many issues in the field of EPC biology, especially in regards to the proper and unambiguous molecular characterization of these cells still remain unresolved, hampering not only basic research but also the effective therapeutic use and widespread application of these cells. In this review, we introduce the recent concept of EPC identification in terms of hematopoietic and nonhematopoietic EPCs along with the development of EPC biology research. Furthermore, we define the role of circulating EPCs in postnatal neovascularization to illustrate the future direction of EPC therapeutic applications. Next, we review on-going medical applications of EPC for cardiovascular and peripheral vascular diseases, introduce the practical example of therapeutic application of EPCs to patients with ischemic disease, and discuss about the feedback of clinical researches. Copyright © 2011 AlphaMed Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mannose receptor-mediated regulation of serum glycoprotein homeostasis.

              Carbohydrates are thought to function as tags that mark circulatory glycoproteins for rapid clearance. To examine the role of the mannose receptor (MR) in glycoprotein clearance, we generated mice genetically deficient in MR. MR-/- mice were defective in clearing proteins bearing accessible mannose and N-acetylglucosamine residues and had elevated levels of eight different lysosomal hydrolases. Proteomic analysis of MR-/- and control mouse sera showed that an additional 4 out of 52 proteins identified were elevated in MR-/- serum. Each of these is up-regulated during inflammation and wound healing. Thus, MR appears to operate as an essential regulator of serum glycoprotein homeostasis.
                Bookmark

                Author and article information

                Journal
                Physiol Rep
                Physiol Rep
                physreports
                phy2
                Physiological Reports
                Wiley Periodicals, Inc.
                2051-817X
                1 March 2014
                19 March 2014
                : 2
                : 3
                : e00261
                Affiliations
                [1 ]Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
                [2 ]Vascular Regeneration Research Group, Institute of Biomedical Research and Innovation, Kobe, Japan
                [3 ]Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
                [4 ]Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Tochigi, Japan
                Author notes
                CorrespondenceTakayuki Asahara, 143 Shimokasuya, Isehara,Kanagawa, 259‐1193, Japan. Tel: 0463‐93‐1121 Fax: 0463‐95‐0961 E‐mail: asa777@ 123456is.icc.u-tokai.ac.jp
                Article
                phy2261
                10.1002/phy2.261
                4002241
                24760515
                e56987d1-d1b9-403b-98e0-a0f6a11726ed
                © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 January 2014
                : 17 February 2014
                : 17 February 2014
                Categories
                Original Research

                culture,endothelial progenitor cell,signal transduction,transcription

                Comments

                Comment on this article