7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Future of Islet Transplantation Is Now

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Milestones in the history of diabetes therapy include the discovery of insulin and successful methods of beta cell replacement including whole pancreas and islet cell transplantation options. While pancreas transplantation remains the gold standard for patients who have difficulty controlling their symptoms with exogenous insulin, islet allotransplantation is now able to provide similar results with some advantages that make it an attractive potential alternative. The Edmonton Protocol, which incorporated a large dose of islets from multiple donors with steroid-free immunosuppression helped to establish the modern era of islet transplantation almost 20 years ago. While islet allotransplantation is recognized around the world as a powerful clinical therapy for type 1 diabetes it is not yet recognized by the Federal Drug Administration of the United States. Large-scale clinical trials administered by the Clinical Islet Transplantation Consortium have recently demonstrated that the well-regulated manufacture of a human islet product transplanted into patients with difficult to control type 1 diabetes and with a history of severe hyperglycemic episodes can safely and efficaciously maintain glycemic balance and eliminate the most severe complications associated with diabetes. The results of these clinical trials have established a strong basis for licensure of clinical islet allotransplantation in the US. Recognition by the Federal Drug Administration would likely lead to third party reimbursement for islet allotransplantation as a therapeutic option in the United States and would make the treatment available to many more patients. The high costs of rampant diabetes justify the expense of the treatment, which is in-line with the costs of clinical pancreas transplantation. While much enthusiasm and hope is raised toward the development and optimization of stem cell therapy, the islet transplantation community should push toward licensure, if that means broader access of this procedure to patients who may benefit from it. Even as we prepare to take the first steps in that direction, we must acknowledge the new challenges that a shift from the experimental to clinical will bring. Clinical islet allotransplantation in the United States would be a game-changing event in the treatment of type 1 diabetes and also generate enthusiasm for continued research.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Five-year follow-up after clinical islet transplantation.

          Islet transplantation can restore endogenous beta-cell function to subjects with type 1 diabetes. Sixty-five patients received an islet transplant in Edmonton as of 1 November 2004. Their mean age was 42.9 +/- 1.2 years, their mean duration of diabetes was 27.1 +/- 1.3 years, and 57% were women. The main indication was problematic hypoglycemia. Forty-four patients completed the islet transplant as defined by insulin independence, and three further patients received >16,000 islet equivalents (IE)/kg but remained on insulin and are deemed complete. Those who became insulin independent received a total of 799,912 +/- 30,220 IE (11,910 +/- 469 IE/kg). Five subjects became insulin independent after one transplant. Fifty-two patients had two transplants, and 11 subjects had three transplants. In the completed patients, 5-year follow-up reveals that the majority ( approximately 80%) have C-peptide present post-islet transplant, but only a minority ( approximately 10%) maintain insulin independence. The median duration of insulin independence was 15 months (interquartile range 6.2-25.5). The HbA(1c) (A1C) level was well controlled in those off insulin (6.4% [6.1-6.7]) and in those back on insulin but C-peptide positive (6.7% [5.9-7.5]) and higher in those who lost all graft function (9.0% [6.7-9.3]) (P < 0.05). Those who resumed insulin therapy did not appear more insulin resistant compared with those off insulin and required half their pretransplant daily dose of insulin but had a lower increment of C-peptide to a standard meal challenge (0.44 +/- 0.06 vs. 0.76 +/- 0.06 nmol/l, P < 0.001). The Hypoglycemic score and lability index both improved significantly posttransplant. In the 128 procedures performed, bleeding occurred in 15 and branch portal vein thrombosis in 5 subjects. Complications of immunosuppressive therapy included mouth ulcers, diarrhea, anemia, and ovarian cysts. Of the 47 completed patients, 4 required retinal laser photocoagulation or vitrectomy and 5 patients with microalbuminuria developed macroproteinuria. The need for multiple antihypertensive medications increased from 6% pretransplant to 42% posttransplant, while the use of statin therapy increased from 23 to 83% posttransplant. There was no change in the neurothesiometer scores pre- versus posttransplant. In conclusion, islet transplantation can relieve glucose instability and problems with hypoglycemia. C-peptide secretion was maintained in the majority of subjects for up to 5 years, although most reverted to using some insulin. The results, though promising, still point to the need for further progress in the availability of transplantable islets, improving islet engraftment, preserving islet function, and reducing toxic immunosuppression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia

            OBJECTIVE Impaired awareness of hypoglycemia (IAH) and severe hypoglycemic events (SHEs) cause substantial morbidity and mortality in patients with type 1 diabetes (T1D). Current therapies are effective in preventing SHEs in 50–80% of patients with IAH and SHEs, leaving a substantial number of patients at risk. We evaluated the effectiveness and safety of a standardized human pancreatic islet product in subjects in whom IAH and SHEs persisted despite medical treatment. RESEARCH DESIGN AND METHODS This multicenter, single-arm, phase 3 study of the investigational product purified human pancreatic islets (PHPI) was conducted at eight centers in North America. Forty-eight adults with T1D for >5 years, absent stimulated C-peptide, and documented IAH and SHEs despite expert care were enrolled. Each received immunosuppression and one or more transplants of PHPI, manufactured on-site under good manufacturing practice conditions using a common batch record and standardized lot release criteria and test methods. The primary end point was the achievement of HbA1c 0.0001). No study-related deaths or disabilities occurred. Five of the enrollees (10.4%) experienced bleeds requiring transfusions (corresponding to 5 of 75 procedures), and two enrollees (4.1%) had infections attributed to immunosuppression. Glomerular filtration rate decreased significantly on immunosuppression, and donor-specific antibodies developed in two patients. CONCLUSIONS Transplanted PHPI provided glycemic control, restoration of hypoglycemia awareness, and protection from SHEs in subjects with intractable IAH and SHEs. Safety events occurred related to the infusion procedure and immunosuppression, including bleeding and decreased renal function. Islet transplantation should be considered for patients with T1D and IAH in whom other, less invasive current treatments have been ineffective in preventing SHEs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Improvement in Outcomes of Clinical Islet Transplantation: 1999–2010

              OBJECTIVE To describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010. RESEARCH DESIGN AND METHODS A total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years. RESULTS Insulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001). CONCLUSIONS The CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                13 July 2018
                2018
                : 5
                : 202
                Affiliations
                [1] 1Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network , Pittsburgh, PA, United States
                [2] 2Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, PA, United States
                [3] 3College of Medicine, Drexel University , Philadelphia, PA, United States
                Author notes

                Edited by: Roberto Gramignoli, Karolinska Institutet (KI), Sweden

                Reviewed by: Wanxing Cui, MedStar Georgetown University Hospital, United States; Makiko Kumagai, Karolinska University Hospital, Sweden; Antonio Secchi, Università Vita-Salute San Raffaele, Italy

                *Correspondence: Rita Bottino rita.bottino@ 123456ahn.org

                This article was submitted to Innovative Therapies, a section of the journal Frontiers in Medicine

                Article
                10.3389/fmed.2018.00202
                6053495
                e56dc89a-3b0c-43d6-9c6a-3ce85d7988c7
                Copyright © 2018 Bottino, Knoll, Knoll, Bertera and Trucco.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 May 2018
                : 25 June 2018
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 88, Pages: 13, Words: 11185
                Categories
                Medicine
                Review

                islets,allotransplantation,type 1 diabetes,transplantation,pancreas,clinical islet transplantation,hypoglycemia,insulin independence

                Comments

                Comment on this article