32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urine MicroRNA as Potential Biomarkers of Autosomal Dominant Polycystic Kidney Disease Progression: Description of miRNA Profiles at Baseline

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Autosomal dominant polycystic kidney disease (ADPKD) is clinically heterogenic. Biomarkers are needed to predict prognosis and guide management. We aimed to profile microRNA (miRNA) in ADPKD to gain molecular insight and evaluate biomarker potential.

          Methods

          Small-RNA libraries were generated from urine specimens of ADPKD patients (N = 20) and patients with chronic kidney disease of other etiologies (CKD, N = 20). In this report, we describe the miRNA profiles and baseline characteristics. For reference, we also examined the miRNA transcriptome in primary cultures of ADPKD cyst epithelia (N = 10), normal adult tubule (N = 8) and fetal tubule (N = 7) epithelia.

          Results

          In primary cultures of ADPKD kidney cells, miRNA cistrons mir-143(2) (9.2-fold), let-7i(1) (2.3-fold) and mir-3619(1) (12.1-fold) were significantly elevated compared to normal tubule epithelia, whereas mir-1(4) members (19.7-fold), mir-133b(2) (21.1-fold) and mir-205(1) (3.0-fold) were downregulated (P<0.01). Expression of the dysregulated miRNA in fetal tubule epithelia resembled ADPKD better than normal adult cells, except let-7i, which was lower in fetal cells. In patient biofluid specimens, mir-143(2) members were 2.9-fold higher in urine cells from ADPKD compared to other CKD patients, while expression levels of mir-133b(2) (4.9-fold) and mir-1(4) (4.4-fold) were lower in ADPKD. We also noted increased abundance mir-223(1) (5.6-fold), mir-199a(3) (1.4-fold) and mir-199b(1) (1.8-fold) (P<0.01) in ADPKD urine cells. In ADPKD urine microvesicles, miR-1(2) (7.2-fold) and miR-133a(2) (11.8-fold) were less abundant compared to other CKD patients (P<0.01).

          Conclusions

          We found that in ADPKD urine specimens, miRNA previously implicated as kidney tumor suppressors (miR-1 and miR-133), as well as miRNA of presumed inflammatory and fibroblast cell origin (miR-223/miR-199), are dysregulated when compared to other CKD patients. Concordant with findings in the primary tubule epithelial cell model, this suggests roles for dysregulated miRNA in ADPKD pathogenesis and potential use as biomarkers. We intend to assess prognostic potential of miRNA in a followup analysis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.

          Gradients of signalling and transcription factors govern many aspects of embryogenesis, highlighting the need for spatiotemporal control of regulatory protein levels. MicroRNAs are phylogenetically conserved small RNAs that regulate the translation of target messenger RNAs, providing a mechanism for protein dose regulation. Here we show that microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells. We found that the miR-1 genes are direct transcriptional targets of muscle differentiation regulators including serum response factor, MyoD and Mef2. Correspondingly, excess miR-1 in the developing heart leads to a decreased pool of proliferating ventricular cardiomyocytes. Using a new algorithm for microRNA target identification that incorporates features of RNA structure and target accessibility, we show that Hand2, a transcription factor that promotes ventricular cardiomyocyte expansion, is a target of miR-1. This work suggests that miR-1 genes titrate the effects of critical cardiac regulatory proteins to control the balance between differentiation and proliferation during cardiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unified criteria for ultrasonographic diagnosis of ADPKD.

            Individuals who are at risk for autosomal dominant polycystic kidney disease are often screened by ultrasound using diagnostic criteria derived from individuals with mutations in PKD1. Families with mutations in PKD2 typically have less severe disease, suggesting a potential need for different diagnostic criteria. In this study, 577 and 371 at-risk individuals from 58 PKD1 and 39 PKD2 families, respectively, were assessed by renal ultrasound and molecular genotyping. Using sensitivity data derived from genetically affected individuals and specificity data derived from genetically unaffected individuals, various diagnostic criteria were compared. In addition, data sets were created to simulate the PKD1 and PKD2 case mix expected in practice to evaluate the performance of diagnostic criteria for families of unknown genotype. The diagnostic criteria currently in use performed suboptimally for individuals with mutations in PKD2 as a result of reduced test sensitivity. In families of unknown genotype, the presence of three or more (unilateral or bilateral) renal cysts is sufficient for establishing the diagnosis in individuals aged 15 to 39 y, two or more cysts in each kidney is sufficient for individuals aged 40 to 59 y, and four or more cysts in each kidney is required for individuals > or = 60 yr. Conversely, fewer than two renal cysts in at-risk individuals aged > or = 40 yr is sufficient to exclude the disease. These unified diagnostic criteria will be useful for testing individuals who are at risk for autosomal dominant polycystic kidney disease in the usual clinical setting in which molecular genotyping is seldom performed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Volume progression in polycystic kidney disease.

              Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of cyst-filled kidneys. In a three-year study, we measured the rates of change in total kidney volume, total cyst volume, and iothalamate clearance in patients with ADPKD. Of a total of 241 patients, in 232 patients without azotemia who were 15 to 46 years old at baseline we used magnetic-resonance imaging to correlate the total kidney volume and total cyst volume with iothalamate clearance. Statistical methods included analysis of variance, Pearson correlation, and multivariate regression analysis. Total kidney volume and total cyst volume increased exponentially, a result consistent with an expansion process dependent on growth. The mean (+/-SD) total kidney volume was 1060+/-642 ml at baseline and increased by a mean of 204+/-246 ml (5.27+/-3.92 percent per year, P<0.001) over a three-year period among 214 patients. Total cyst volume increased by 218+/-263 ml (P<0.001) during the same period among 210 patients. The baseline total kidney volume predicted the subsequent rate of increase in volume, independently of age. A baseline total kidney volume above 1500 ml in 51 patients was associated with a declining glomerular filtration rate (by 4.33+/-8.07 ml per minute per year, P<0.001). Total kidney volume increased more in 135 patients with PKD1 mutations (by 245+/-268 ml) than in 28 patients with PKD2 mutations (by 136+/-100 ml, P=0.03). Kidney enlargement resulting from the expansion of cysts in patients with ADPKD is continuous and quantifiable and is associated with the decline of renal function. Higher rates of kidney enlargement are associated with a more rapid decrease in renal function. Copyright 2006 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                29 January 2014
                : 9
                : 1
                : e86856
                Affiliations
                [1 ]Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
                [2 ]Molecular Pathology Laboratory, New York Presbyterian Hospital, Cornell University, New York, New York, United States of America
                [3 ]Pathology and Laboratory Medicine, Weill Medical College, Cornell University, New York, New York, United States of America
                [4 ]Centre for Nephrology, University College London Medical School, London, United Kingdom
                [5 ]Rogosin Institute, Weill Medical College of Cornell University, New York, New York, United States of America
                UCL Institute of Child Health, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: IZB HR JDB TT. Performed the experiments: IZB YCT. Analyzed the data: IZB PM. Contributed reagents/materials/analysis tools: PDW PM. Wrote the paper: IZB. Revised the manuscript: PDW HR JDB TT.

                [¤]

                Current address: Nephrology and Hypertension Services, Hadassah – Hebrew University Medical Center, Jerusalem, Israel.

                Article
                PONE-D-13-42746
                10.1371/journal.pone.0086856
                3906110
                24489795
                e5839828-98d8-46d5-b2f1-c69cb5244f3e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 October 2013
                : 14 December 2013
                Page count
                Pages: 8
                Funding
                IZB was supported by Grant Award Number UL1RR024143 from the National Center for Research Resources, a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research. IZB was also supported in part by a fellowship from the American Physicians Fellowship for Medicine in Israel. The work described in this manuscript was also supported in part by grant number UH2TR000933 awarded by the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH Director. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Expression Analysis
                Genomics
                Genome Expression Analysis
                Medicine
                Clinical Genetics
                Autosomal Dominant
                Polycystic Kidney Disease
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Nephrology
                Tubulointerstitial Disease

                Uncategorized
                Uncategorized

                Comments

                Comment on this article