5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thin films can integrate the versatility and great potential found in the emerging field of metal-organic frameworks directly into device architectures. For fabrication of smart interfaces containing surface-anchored metal-organic frameworks, it is important to understand how the foundational layers form to create the interface between the underlying substrate and porous framework. Herein, the formation and morphology of the first ten cycles of film deposition are investigated for the well-studied HKUST-1 system. Effects of processing variables, such as deposition temperature and substrate quality, are studied. Sequences of scanning probe microscopy images collected after cycles of alternating solution-phase deposition reveal the formation of a discontinuous surface with nucleating and growing crystallites consistent with a Volmer-Weber growth mechanism. Quantitative image analysis determines surface roughness and surface coverage as a function of deposition cycles, producing insight regarding growth and structure of foundational film layers. For carboxylic acid terminated self-assembled monolayers on gold, preferred crystal orientation is influenced by deposition temperature with crystal growth along [100] observed at 25 °C and [111] favored at 50 °C. This difference in crystal orientation results in reduced surface roughness and increased surface coverage at 50 °C. To properly fabricate and fully determine the potential of this material for industrial applications, fundamental understanding of film formation is crucial.

          Related collections

          Author and article information

          Journal
          Langmuir
          Langmuir : the ACS journal of surfaces and colloids
          American Chemical Society (ACS)
          1520-5827
          0743-7463
          Jun 09 2015
          : 31
          : 22
          Affiliations
          [1 ] Department of Chemistry, Hope College, 35 E. 12th Street, Holland, Michigan 49422, United States.
          Article
          10.1021/acs.langmuir.5b01333
          26020573
          e586c39d-a247-4ebe-813b-591e0cf417e2
          History

          Comments

          Comment on this article