21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      New Developments on the Role of Intramuscular Connective Tissue in Meat Toughness

      Annual Review of Food Science and Technology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of maturation and ageing of collagen.

          The deleterious age-related changes in collagen that manifest in the stiffening of the joints, the vascular system and the renal and retinal capillaries are primarily due to the intermolecular cross-linking of the collagen molecules within the tissues. The formation of cross-links was elegantly demonstrated by Verzar over 40 years ago but the nature and mechanisms are only now being unravelled. Cross-linking involves two different mechanisms, one a precise enzymically controlled cross-linking during development and maturation and the other an adventitious non-enzymic mechanism following maturation of the tissue. It is this additional non-enzymic cross-linking, known as glycation, involving reaction with glucose and subsequent oxidation products of the complex, that is the major cause of dysfunction of collagenous tissues in old age. The process is accelerated in diabetic subjects due to the higher levels of glucose. The effect of glycation on cell-matrix interactions is now being studied and may be shown to be an equally important aspect of ageing of collagen. An understanding of these mechanisms is now leading to the development of inhibitors of glycation and compounds capable of cleaving the cross-links, thus alleviating the devastating effects of ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging.

            The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging. Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross-links and a buildup of advanced glycation end-product cross-links. Altered mechanotransduction, poorer activation of satellite cells, poorer chemotactic and delayed inflammatory responses, and a change in modulators of the ECM are important cellular changes. It is possible that the structural and biochemical changes in skeletal muscle ECM contribute to the increased stiffness and impairment in force generated by the contracting muscle fibers seen with aging. The cellular interactions provide and potentially coordinate an adaptation to mechanical loading and ensure successful regeneration after muscle injury. Some of the changes in skeletal muscle ECM with aging may be preventable with resistance or weight training, but it is clear that more human studies are needed on the topic. © 2011 John Wiley & Sons A/S.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The collagen superfamily: from the extracellular matrix to the cell membrane.

              The collagen superfamily is highly complex and shows a remarkable diversity in molecular and supramolecular organization, tissue distribution and function. However, all its members share a common structural feature, the presence of at least one triple-helical domain, which corresponds to a number of (Gly-X-Y)n repeats (X being frequently proline and Y hydroxyproline) in the amino acid sequence. Several sub-families have been determined according to sequence homologies and to similarities in the structural organization and supramolecular assembly. In the present review, we focus on the newly described fibrillar collagens, fibrillar-associated collagens with interrupted triple helix, membrane collagens and multiplexins. Recent advances in the characterization of proteins containing triple-helical domains but not referred to as collagens are also discussed.
                Bookmark

                Author and article information

                Journal
                Annual Review of Food Science and Technology
                Annu. Rev. Food Sci. Technol.
                Annual Reviews
                1941-1413
                1941-1421
                February 28 2014
                February 28 2014
                : 5
                : 1
                : 133-153
                Article
                10.1146/annurev-food-030212-182628
                24437687
                e58a165d-476b-4791-9553-46454dabf165
                © 2014
                History

                Comments

                Comment on this article