7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural mechanisms of eye contact when listening to another person talking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants’ eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The eye contact effect: mechanisms and development.

          The 'eye contact effect' is the phenomenon that perceived eye contact with another human face modulates certain aspects of the concurrent and/or immediately following cognitive processing. In addition, functional imaging studies in adults have revealed that eye contact can modulate activity in structures in the social brain network, and developmental studies show evidence for preferential orienting towards, and processing of, faces with direct gaze from early in life. We review different theories of the eye contact effect and advance a 'fast-track modulator' model. Specifically, we hypothesize that perceived eye contact is initially detected by a subcortical route, which then modulates the activation of the social brain as it processes the accompanying detailed sensory information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses.

            Estimation of statistical power in functional MRI (fMRI) requires knowledge of the expected percent signal change between two conditions as well as estimates of the variability in percent signal change. Variability can be divided into intra-subject variability, reflecting noise within the time series, and inter-subject variability, reflecting subject-to-subject differences in activation. The purpose of this study was to obtain estimates of percent signal change and the two sources of variability from fMRI data, and then use these parameter estimates in simulation experiments in order to generate power curves. Of interest from these simulations were conclusions concerning how many subjects are needed and how many time points within a scan are optimal in an fMRI study of cognitive function. Intra-subject variability was estimated from resting conditions, and inter-subject variability and percent signal change were estimated from verbal working memory data. Simulations derived from these parameters illustrate how percent signal change, intra- and inter-subject variability, and number of time points affect power. An empirical test experiment, using fMRI data acquired during somatosensory stimulation, showed good correspondence between the simulation-based power predictions and the power observed within somatosensory regions of interest. Our analyses suggested that for a liberal threshold of 0.05, about 12 subjects were required to achieve 80% power at the single voxel level for typical activations. At more realistic thresholds, that approach those used after correcting for multiple comparisons, the number of subjects doubled to maintain this level of power. Copyright 2002 Elsevier Science B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stochastic designs in event-related fMRI.

              This article considers the efficiency of event-related fMRI designs in terms of the optimum temporal pattern of stimulus or trial presentations. The distinction between "stochastic" and "deterministic" is used to distinguish between designs that are specified in terms of the probability that an event will occur at a series of time points (stochastic) and those in which events always occur at prespecified time (deterministic). Stochastic designs may be "stationary," in which the probability is constant, or nonstationary, in which the probabilities change with time. All these designs can be parameterized in terms of a vector of occurrence probabilities and a prototypic design matrix that embodies constraints (such as the minimum stimulus onset asynchrony) and the model of hemodynamic responses. A simple function of these parameters is presented and used to compare the relative efficiency of different designs. Designs with slow modulation of occurrence probabilities are generally more efficient than stationary designs. Interestingly the most efficient design is a conventional block design. A critical point, made in this article, is that the most efficient design for one effect may not be the most efficient for another. This is particularly important when considering evoked responses and the differences among responses. The most efficient designs for evoked responses, as opposed to differential responses, require trial-free periods during which baseline levels can be attained. In the context of stochastic, rapid-presentation designs this is equivalent to the inclusion of "null events." Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Journal
                Soc Cogn Affect Neurosci
                Soc Cogn Affect Neurosci
                scan
                Social Cognitive and Affective Neuroscience
                Oxford University Press
                1749-5016
                1749-5024
                February 2017
                20 October 2016
                20 October 2016
                : 12
                : 2
                : 319-328
                Affiliations
                [1 ]Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
                [2 ]Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
                [3 ]Institute of Psychology, Humboldt-Universität zu Berlin, Berlin 12489, Germany
                Author notes
                Correspondence should be addressed to Jing Jiang, Stephanstr. 1a, Leipzig, 04103, Germany. Email: jiang@ 123456cbs.mpg.de
                Article
                nsw127
                10.1093/scan/nsw127
                5390711
                27576745
                e597de79-965f-4040-85b8-ffab091d9ea8
                © The Author(s) (2016). Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 26 April 2016
                : 14 July 2016
                : 24 August 2016
                Page count
                Pages: 10
                Funding
                Funded by: Max Planck Research Grant
                Funded by: China Scholarship Council (CSC)
                Funded by: German Academic Exchange Service (DAAD)
                Categories
                Original Articles

                Neurosciences
                eye contact,verbal communication,fixation-based event-related fmri,eye tracking,rapid event-related design

                Comments

                Comment on this article