38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sesame seed is a reservoir of nutritional components with numerous beneficial effects along with health promotion in humans. The bioactive components present in the seed include vital minerals, vitamins, phytosterols, polyunsaturated fatty acids, tocopherols and unique class of lignans such as sesamin and sesamolin. The presence of phenylpropanoid compounds namely lignans along with tocopherols and phytosterols provide defense mechanism against reactive oxygen species and increases keeping quality of oil by preventing oxidative rancidity. In this article, we have reviewed the nutraceutical, pharmacological, traditional and industrial value of sesame seeds with respect to bioactive components that hold high antioxidant value. Valuable information on superior functional components of sesame will strongly promote the use of sesame seeds in the daily diet world-wide. In spite of huge repertoire of sesame germplasm collection, limited research efforts on the use of conventional and biotechnological methodologies have resulted in minimal success in developing nutritionally superior cultivars. In consequence, value addition efforts in sesame would enable development of genotypes with high antioxidant activity and subsequently prevention of free radical related diseases. Modification of bioactive components in sesame would enable production of stabilized sesame oil with enhanced shelf life and better market value.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          The chemistry and antioxidant properties of tocopherols and tocotrienols.

          This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that alpha-tocopherol is the most efficient antioxidant and vitamin E homologue in vivo, there was always a considerable discrepancy in its "absolute" and "relative" antioxidant effectiveness in vitro, especially when compared to gamma-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherols in vivo and in vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (alpha-, beta-, gamma-, and delta-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential fatty acids in health and chronic disease.

            Human beings evolved consuming a diet that contained about equal amounts of n-3 and n-6 essential fatty acids. Over the past 100-150 y there has been an enormous increase in the consumption of n-6 fatty acids due to the increased intake of vegetable oils from corn, sunflower seeds, safflower seeds, cottonseed, and soybeans. Today, in Western diets, the ratio of n-6 to n-3 fatty acids ranges from approximately 20-30:1 instead of the traditional range of 1-2:1. Studies indicate that a high intake of n-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction and decreases in bleeding time. n-3 Fatty acids, however, have antiinflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. These beneficial effects of n-3 fatty acids have been shown in the secondary prevention of coronary heart disease, hypertension, type 2 diabetes, and, in some patients with renal disease, rheumatoid arthritis, ulcerative colitis, Crohn disease, and chronic obstructive pulmonary disease. Most of the studies were carried out with fish oils [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]. However, alpha-linolenic acid, found in green leafy vegetables, flaxseed, rapeseed, and walnuts, desaturates and elongates in the human body to EPA and DHA and by itself may have beneficial effects in health and in the control of chronic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin E: function and metabolism.

              Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.
                Bookmark

                Author and article information

                Journal
                Pharmacogn Rev
                Pharmacogn Rev
                PRev
                Pharmacognosy Reviews
                Medknow Publications & Media Pvt Ltd (India )
                0973-7847
                0976-2787
                Jul-Dec 2014
                : 8
                : 16
                : 147-155
                Affiliations
                [1] Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, India
                [1 ] Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
                Author notes
                Address for correspondence: Dr. K.V. Bhat, Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi - 110 012, India. E-mail: kvbhat2001@ 123456yahoo.com
                Article
                PRev-8-147
                10.4103/0973-7847.134249
                4127822
                25125886
                e59d5cf0-fc17-4621-b747-473ad6d8e16b
                Copyright: © Pharmacognosy Reviews

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 September 2013
                : 30 January 2014
                : 10 June 2014
                Categories
                Plant Review

                Pharmacology & Pharmaceutical medicine
                bioactive components,lignans,nutraceuticals,phytosterols,tocopherols

                Comments

                Comment on this article