17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1.

      Nature genetics
      Alleles, Animals, Beckwith-Wiedemann Syndrome, genetics, Blotting, Northern, Brain, metabolism, Chromosome Mapping, Down-Regulation, Fathers, Female, Gene Deletion, Genomic Imprinting, Male, Mice, Mice, Inbred C57BL, Models, Genetic, Molecular Sequence Data, Mothers, Oligonucleotide Array Sequence Analysis, Physical Chromosome Mapping, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Targeted mutation of the DNA methyltransferase gene results in embryonic lethality

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dnmt3L and the establishment of maternal genomic imprints.

            Complementary sets of genes are epigenetically silenced in male and female gametes in a process termed genomic imprinting. The Dnmt3L gene is expressed during gametogenesis at stages where genomic imprints are established. Targeted disruption of Dnmt3L caused azoospermia in homozygous males, and heterozygous progeny of homozygous females died before midgestation. Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated. The defect was specific to imprinted regions, and global genome methylation levels were not affected. Lack of maternal methylation imprints in heterozygous embryos derived from homozygous mutant oocytes caused biallelic expression of genes that are normally expressed only from the allele of paternal origin. The key catalytic motifs characteristic of DNA cytosine methyltransferases have been lost from Dnmt3L, and the protein is more likely to act as a regulator of imprint establishment than as a DNA methyltransferase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The non-coding Air RNA is required for silencing autosomal imprinted genes.

              In genomic imprinting, one of the two parental alleles of an autosomal gene is silenced epigenetically by a cis-acting mechanism. A bidirectional silencer for a 400-kilobase region that contains three imprinted, maternally expressed protein-coding genes (Igf2r/Slc22a2/Slc22a3) has been shown by targeted deletion to be located in a sequence of 3.7 kilobases, which also contains the promoter for the imprinted, paternally expressed non-coding Air RNA. Expression of Air is correlated with repression of all three genes on the paternal allele; however, Air RNA overlaps just one of these genes in an antisense orientation. Here we show, by inserting a polyadenylation signal that truncates 96% of the RNA transcript, that Air RNA is required for silencing. The truncated Air allele maintains imprinted expression and methylation of the Air promoter, but shows complete loss of silencing of the Igf2r/Slc22a2/Slc22a3 gene cluster on the paternal chromosome. Our results indicate that non-coding RNAs have an active role in genomic imprinting.
                Bookmark

                Author and article information

                Comments

                Comment on this article