282
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in β-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies novel risk loci for type 2 diabetes.

          Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.

            By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P<5x10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation profiling of human chromosomes 6, 20 and 22

              DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.
                Bookmark

                Author and article information

                Journal
                EMBO J
                EMBO J
                The EMBO Journal
                Nature Publishing Group
                0261-4189
                1460-2075
                21 March 2012
                31 January 2012
                31 January 2012
                : 31
                : 6
                : 1405-1426
                Affiliations
                [1 ]simpleLaboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles , Brussels, Belgium
                [2 ]simpleLaboratory of Experimental Medicine, Faculty of Medicine, Université Libre de Bruxelles , Brussels, Belgium
                [3 ]simpleDepartment of Molecular Evolution, Institute for Cellular and Molecular Biology (IZMB), University of Bonn , Bonn, Germany
                [4 ]simpleMetabolic Unit, Department of Endocrinology and Metabolism, University of Pisa , Pisa, Italy
                [5 ]simpleDivision of Endocrinology, Erasmus Hospital , Brussels, Belgium
                Author notes
                [a ]Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Brussels 1070, Belgium. Tel.: +32 2 555 62 45; Fax: +32 2 555 62 57; E-mail: ffuks@ 123456ulb.ac.be
                Article
                emboj2011503
                10.1038/emboj.2011.503
                3321176
                22293752
                e5b116c3-15bb-4241-a159-901727674f07
                Copyright © 2012, European Molecular Biology Organization

                This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.

                History
                : 07 December 2011
                : 12 December 2011
                Categories
                Article

                Molecular biology
                pancreatic islets,type 2 diabetes,dna methylation
                Molecular biology
                pancreatic islets, type 2 diabetes, dna methylation

                Comments

                Comment on this article