18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.

      1 , ,
      Nano letters
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The poor internal quantum efficiency (IQE) arising from high recombination and insufficient absorption is one of the critical challenges toward achieving high efficiency water splitting in hematite (α-Fe2O3) photoelectrodes. By combining the nanowire (NW) geometry with the localized surface plasmon resonance (LSPR) in semiconductor-metal-metal oxide core-multishell (CMS) NWs, we theoretically demonstrate an effective route to strongly improve absorption within ultrathin (sub-50 nm) hematite layers. We show that Si-Al-Fe2O3 CMS NWs exhibit photocurrent densities comparable to Si-Ag-Fe2O3 CMS and outperform Fe2O3, Si-Fe2O3 CS and Si-Au-Fe2O3 CMS NWs. Specifically; Si-Al-Fe2O3 CMS NWs reach photocurrent densities of ∼ 11.81 mA/cm(2) within a 40 nm thick hematite shell which corresponding to a solar to hydrogen (STH) efficiency of 14.5%. This corresponds to about 93% of the theoretical maximum for bulk hematite. Therefore, we establish Al as an excellent alternative plasmonic material compared to precious metals in CMS structures. Further, the absorbed photon flux is close to the NW surface in the CMS NWs, which ensures the charges generated can reach the reaction site with minimal recombining. Although the NW geometry is anisotropic, the CMS NWs exhibit polarization independent absorption over a large range of incidence angles. Finally, we show that Si-Al-Fe2O3 CMS NWs demonstrate photocurrent densities greater than ∼ 8.2 mA/cm(2) (STH efficiency of 10%) for incidence angles as large as 45°. These theoretical results strongly establish the effectiveness of the Al-based CMS NWs for achieving scalable and cost-effective photoelectrodes with improved IQE, enabling a novel route toward high efficiency water splitting.

          Related collections

          Author and article information

          Journal
          Nano Lett
          Nano letters
          American Chemical Society (ACS)
          1530-6992
          1530-6984
          Aug 13 2014
          : 14
          : 8
          Affiliations
          [1 ] Department of Physics and Astronomy and ‡Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.
          Article
          10.1021/nl501541s
          24971707
          e5b460d3-a294-4559-8b0c-ac0ef3d63bfc
          History

          Comments

          Comment on this article