36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To date, no genes have been reported to directly affect the de novo production of floral nectar. In an effort to identify genes involved in nectar production, the Affymetrix ® ATH1 GeneChip was previously used to examine global gene expression profiles in Arabidopsis thaliana nectaries. One of the genes displaying highly enriched expression in nectaries was CELL WALL INVERTASE 4 ( AtCWINV4, At2g36190), which encodes an enzyme that putatively catalyses the hydrolysis of sucrose into glucose and fructose. RT-PCR was used to confirm the nectary-enriched expression of AtCWINV4, as well as an orthologue from Brassica rapa. To probe biological function, two independent Arabidopsis cwinv4 T-DNA mutants were isolated. Unlike wild-type plants, cwinv4 lines did not produce nectar. While overall nectary morphology appeared to be normal, cwinv4 flowers accumulated higher than normal levels of starch in the receptacle, but not within the nectaries themselves. Conversely, wild-type, but not cwinv4, nectarial stomata stained intensely for starch. Cell wall extracts prepared from mutant flowers displayed greatly reduced invertase activity when compared with wild-type plants, and cwinv4 flowers also accumulated significantly lower levels of total soluble sugar. Cumulatively, these results implicate CWINV4 as an absolutely required factor for nectar production in the Brassicaceae, specifically by maintaining constant sink status within nectaries, thus allowing them to accumulate the sugars necessary for nectar production. In addition, CWINV4 is probably responsible for the hexose-rich composition observed for many Brassicaceae nectars.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning.

            Arnd Sturm (1999)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency.

              We describe a general approach for identifying components of subcellular structures in a multicellular organism by exploiting the ability to generate thousands of independent transformants in Arabidopsis thaliana. A library of Arabidopsis cDNAs was constructed so that the cDNAs were inserted at the 3' end of the green fluorescent protein (GFP) coding sequence. The library was introduced en masse into Arabidopsis by Agrobacterium-mediated transformation. Fluorescence imaging of 5,700 transgenic plants indicated that approximately 2% of lines expressed a fusion protein with a different subcellular distribution than that of soluble GFP. About half of the markers identified were targeted to peroxisomes or other subcellular destinations by non-native coding sequence (i.e., out-of-frame cDNAs). This observation suggests that some targeting signals are of sufficiently low information content that they can be generated frequently by chance. The potential of the approach for identifying markers with unique dynamic processes is demonstrated by the identification of a GFP fusion protein that displays a cell-cycle regulated change in subcellular distribution. Our results indicate that screening GFP-fusion protein libraries is a useful approach for identifying and visualizing components of subcellular structures and their associated dynamics in higher plant cells.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                January 2010
                27 October 2009
                27 October 2009
                : 61
                : 2
                : 395-404
                Affiliations
                Department of Biology, 1035 Kirby Dr, University of Minnesota Duluth, Duluth, MN 55812, USA
                Author notes
                [* ]To whom correspondence should be addressed: E-mail: cjcarter@ 123456d.umn.edu
                Article
                10.1093/jxb/erp309
                2803206
                19861655
                e5bb0bb4-6390-492d-ba01-3ac92a26d649
                © 2009 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 6 August 2009
                : 30 September 2009
                : 2 October 2009
                Categories
                Research Papers

                Plant science & Botany
                nectaries,cell wall invertase,arabidopsis thaliana,invertase,nectary,nectar,brassica rapa

                Comments

                Comment on this article