22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of the Phytochemical and Pharmacological Characteristics of Moringa oleifera

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moringa oleifera is a valued medicinal plant in traditional folk medicine. Many pharmacological studies have shown the ability of this plant to exhibit analgesic, anti-inflammatory, antipyretic, anticancer, antioxidant, nootropic, hepatoprotective, gastroprotective, anti-ulcer, cardiovascular, anti-obesity, antiepileptic, antiasthmatic, antidiabetic, anti-urolithiatic, diuretic, local anesthetic, anti-allergic, anthelmintic, wound healing, antimicrobial, immunomodulatory, and antidiarrheal properties. This review is a comprehensive summary of the phytochemical and pharmacological activities as well as the traditional and therapeutic uses of this plant. M. oleifera has wide traditional and pharmacological uses in various pathophysiological conditions. We will review the various properties of M. oleifera (drumstick tree) and focus on its various medicinal properties. We think that it is an attractive subject for further experimental and clinical investigations.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview

          Moringa oleifera is an interesting plant for its use in bioactive compounds. In this manuscript, we review studies concerning the cultivation and production of moringa along with genetic diversity among different accessions and populations. Different methods of propagation, establishment and cultivation are discussed. Moringa oleifera shows diversity in many characters and extensive morphological variability, which may provide a resource for its improvement. Great genetic variability is present in the natural and cultivated accessions, but no collection of cultivated and wild accessions currently exists. A germplasm bank encompassing the genetic variability present in Moringa is needed to perform breeding programmes and develop elite varieties adapted to local conditions. Alimentary and medicinal uses of moringa are reviewed, alongside the production of biodiesel. Finally, being that the leaves are the most used part of the plant, their contents in terms of bioactive compounds and their pharmacological properties are discussed. Many studies conducted on cell lines and animals seem concordant in their support for these properties. However, there are still too few studies on humans to recommend Moringa leaves as medication in the prevention or treatment of diseases. Therefore, further studies on humans are recommended.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity.

            Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to human against infections and degenerative diseases. Current research is now directed towards natural antioxidants originated from plants due to safe therapeutics. Moringa oleifera is used in Indian traditional medicine for a wide range of various ailments. To understand the mechanism of pharmacological actions, antioxidant properties of the Moringa oleifera leaf extracts were tested in two stages of maturity using standard in vitro models. The successive aqueous extract of Moringa oleifera exhibited strong scavenging effect on 2, 2-diphenyl-2-picryl hydrazyl (DPPH) free radical, superoxide, nitric oxide radical and inhibition of lipid per oxidation. The free radical scavenging effect of Moringa oleifera leaf extract was comparable with that of the reference antioxidants. The data obtained in the present study suggests that the extracts of Moringa oleifera both mature and tender leaves have potent antioxidant activity against free radicals, prevent oxidative damage to major biomolecules and afford significant protection against oxidative damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L.

              Moringa species are important multi-purpose tropical crops, as human foods and for medicine and oil production. There has been no previous comprehensive analysis of the secondary metabolites in Moringa species. Tissues of M. oleifera from a wide variety of sources and M. stenopetala from a single source were analyzed for glucosinolates and phenolics (flavonoids, anthocyanins, proanthocyanidins, and cinnamates). M. oleifera and M. stenopetala seeds only contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate at high concentrations. Roots of M. oleifera and M. stenopetala had high concentrations of both 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and benzyl glucosinolate. Leaves from both species contained 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate and three monoacetyl isomers of this glucosinolate. Only 4-(alpha-l-rhamnopyranosyloxy)-benzylglucosinolate was detected in M. oleifera bark tissue. M. oleifera leaves contained quercetin-3-O-glucoside and quercetin-3-O-(6' '-malonyl-glucoside), and lower amounts of kaempferol-3-O-glucoside and kaempferol-3-O-(6' '-malonyl-glucoside). M. oleifera leaves also contained 3-caffeoylquinic acid and 5-caffeoylquinic acid. Leaves of M. stenopetala contained quercetin 3-O-rhamnoglucoside (rutin) and 5-caffeoylquinic acid. Neither proanthocyanidins nor anthocyanins were detected in any of the tissues of either species.
                Bookmark

                Author and article information

                Journal
                J Pharm Bioallied Sci
                J Pharm Bioallied Sci
                JPBS
                Journal of Pharmacy & Bioallied Sciences
                Medknow Publications & Media Pvt Ltd (India )
                0976-4879
                0975-7406
                Oct-Dec 2018
                : 10
                : 4
                : 181-191
                Affiliations
                [1]Department of Pharmacology, KPC Medical College, West Bengal University of Health Sciences, Kolkata, West Bengal, India
                [1 ]Department of Pharmacology, School of Pharmaceutical Sciences, Siksha O Anusandhan (SOA) University, Bhubaneswar, Orissa, India
                [2 ]Department of Pharmacology, GSL Medical College, Rajahmundry, Andhra Pradesh, India
                Author notes
                Address for correspondence: Dr. Sanjay Kumar, Department of Pharmacology, GSL Medical College, Rajahmundry, Andhra Pradesh, India. E-mail: sanjaykumarimssum@ 123456gmail.com
                Article
                JPBS-10-181
                10.4103/JPBS.JPBS_126_18
                6266645
                30568375
                e5c02d9a-63d7-4516-b1d0-9b3675108420
                Copyright: © 2018 Journal of Pharmacy and Bioallied Sciences

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                Categories
                Review Article

                Pharmacology & Pharmaceutical medicine
                moringa oleifera,pharmacological actions,phytochemistry

                Comments

                Comment on this article