62
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of climate change on Aspergillus flavus and aflatoxin B 1 production

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review considers the available information on the potential impact of key environmental factors and their interactions on the molecular ecology, growth and aflatoxin production by Aspergillus flavus in vitro and in maize grain. The recent studies which have been carried out to examine the impact of water activity × temperature on aflatoxin biosynthesis and phenotypic aflatoxin production are examined. These have shown that there is a direct relationship between the relative expression of key regulatory and structural genes under different environmental conditions which correlate directly with aflatoxin B1 production. A model has been developed to integrate the relative expression of 10 biosynthetic genes in the pathway, growth and aflatoxin B 1 (AFB 1) production which was validated under elevated temperature and water stress conditions. The effect of interacting conditions of a w × temperature × elevated CO 2 (2 × and 3 × existing levels) are detailed for the first time. This suggests that while such interacting environmental conditions have little effect on growth they do have a significant impact on aflatoxin biosynthetic gene expression (structural aflD and regulatory aflR genes) and can significantly stimulate the production of AFB 1. While the individual factors alone have an impact, it is the combined effect of these three abiotic factors which have an impact on mycotoxin production. This approach provides data which is necessary to help predict the real impacts of climate change on mycotoxigenic fungi.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          How will climate change affect mycotoxins in food?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate change and food safety: an emerging issue with special focus on Europe.

            According to general consensus, the global climate is changing, which may also affect agricultural and livestock production. The potential impact of climate change on food security is a widely debated and investigated issue. Nonetheless, the specific impact on safety of food and feed for consumers has remained a less studied topic. This review therefore identifies the various food safety issues that are likely to be affected by changes in climate, particularly in Europe. Amongst the issues identified are mycotoxins formed on plant products in the field or during storage; residues of pesticides in plant products affected by changes in pest pressure; trace elements and/or heavy metals in plant products depending on changes in their abundance and availability in soils; polycyclic aromatic hydrocarbons in foods following changes in long-range atmospheric transport and deposition into the environment; marine biotoxins in seafood following production of phycotoxins by harmful algal blooms; and the presence of pathogenic bacteria in foods following more frequent extreme weather conditions, such as flooding and heat waves. Research topics that are amenable to further research are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies.

              Mycotoxins are toxic secondary metabolites of fungal origin and contaminate agricultural commodities before or under post-harvest conditions. They are mainly produced by fungi in the Aspergillus, Penicillium and Fusarium genera. When ingested, inhaled or absorbed through the skin, mycotoxins will cause lowered performance, sickness or death on humans and animals. Factors that contribute to mycotoxin contamination of food and feed in Africa include environmental, socio-economic and food production. Environmental conditions especially high humidity and temperatures favour fungal proliferation resulting in contamination of food and feed. The socio-economic status of majority of inhabitants of sub-Saharan Africa predisposes them to consumption of mycotoxin contaminated products either directly or at various points in the food chain. The resulting implications include immuno-suppression, impaired growth, various cancers and death depending on the type, period and amount of exposure. A synergistic effect between mycotoxin exposure and some important diseases in the continent such as malaria, kwashiorkor and HIV/AIDS have been suggested. Mycotoxin concerns have grown during the last few decades because of their implications to human and animal health, productivity, economics of their management and trade. This has led to development of maximum tolerated limits for mycotoxins in various countries. Even with the standards in place, the greatest recorded fatal mycotoxin-poisoning outbreak caused by contamination of maize with aflatoxins occurred in Africa in 2004. Pre-harvest practices; time of harvesting; handling of produce during harvesting; moisture levels at harvesting, transportation, marketing and processing; insect damage all contribute to mycotoxin contamination. Possible intervention strategies include good agricultural practices such as early harvesting, proper drying, sanitation, proper storage and insect management among others. Other possible interventions include biological control, chemical control, decontamination, breeding for resistance as well as surveillance and awareness creation. There is need for efficient, cost-effective sampling and analytical methods that can be used for detection analysis of mycotoxins in developing countries.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                22 July 2014
                2014
                : 5
                : 348
                Affiliations
                Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University Cranfield, Bedford, UK
                Author notes

                Edited by: Mehdi Razzaghi-Abyaneh, Pasteur Institute of Iran, Iran

                Reviewed by: Paula Cristina Azevedo Rodrigues, Polytechnic Institute of Braganca, Portugal; Russell Paterson, University of Minho, Portugal

                *Correspondence: Naresh Magan, Applied Mycology Group, Cranfield Soil and AgriFood Institute, School of Applied Science, Cranfield University, Vincent Building, College Road, Cranfield, Bedford MK43 0AL, UK e-mail: n.magan@ 123456cranfield.ac.uk

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00348
                4106010
                25101060
                e5d0250b-86b3-4b0b-b056-c69b426b5301
                Copyright © 2014 Medina, Rodriguez and Magan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 May 2014
                : 23 June 2014
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 41, Pages: 7, Words: 5418
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                climate change factors,water activity,temperature,elevated co2,growth,gene expression,aflatoxin production,ecology

                Comments

                Comment on this article