10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals.

      Histochemistry and Cell Biology
      Animals, Aorta, metabolism, Cattle, Cell Communication, Connexin 43, Connexins, Coronary Vessels, Gap Junctions, Immunohistochemistry, Muscle, Smooth, Vascular, Rats, Swine, Swine, Miniature

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intercellular communication between cells of the vessel wall is established by a combination of diffusion and convection of humoral and endothelial factors in the extracellular fluid or by direct intercellular contacts present in the form of gap junctions composed of proteins called connexins. At least connexin (Cx)37, Cx40 and Cx43 are expressed in the vessel wall, but disparate findings with regard to the cell specific localisation of connexins in the vasculature indicate that the distribution of connexins may be species and vessel specific. Moreover, differences in expression exist between cells in culture and tissue sections. We performed an inventory immunohistochemical study on the localisation of Cx37, Cx40 and Cx43 on tissue sections of the bovine, micropig and rat aorta and coronary system, which represent morphologically and functionally different types of vessels in the arterial system. We could observe Cx40 labelling most commonly, although with various intensities, between endothelial and smooth muscle cells of the species studied, with the exception of rat aortic smooth muscle cells. The distribution of Cx43 is more differentiated and mostly confined to smooth muscle cells, although it can be detected scarcely between endothelial cells. Cx37, when detectable, is predominantly expressed between endothelial cells in a heterogeneous pattern. We conclude that Cx40 is the constitutive vascular gap junction protein in situ and guarantees cell coupling between cells in the vessel wall. The differentiated distribution of both Cx37 and Cx43 suggests they are involved in more dynamic processes.

          Related collections

          Author and article information

          Comments

          Comment on this article