1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fecal Short Chain Fatty Acids and Dietary Intake in Italian Women With Restrictive Anorexia Nervosa: A Pilot Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nutritional disorders such as Anorexia Nervosa (AN) can shape the composition of gut microbiota and its metabolites such as short chain fatty acid (SCFA). This study aims to compare fecal SCFA along with dietary intake of women with restrictive AN (r-AN = 10) and those of sex-matched lean controls (C = 8). The main fecal short chain fatty acids (SCFA) were assessed by gas chromatography equipped with a flame ionization detector. All participants completed 7-day food record and underwent indirect calorimetry for measuring resting energy expenditure (REE). Butyrate and propionate fecal concentrations were significantly reduced in r-AN patients compared to controls. The intake of carbohydrate and fat was significantly lower in r-AN patients than controls as well as energy intake and REE; whereas the amount of protein and fiber did not differ between groups. These preliminary results showed that r-AN patients had a reduced excretion of fecal SCFA, likely as a mechanism to compensate for the lower energy and carbohydrate intake observed between groups. Therefore, further studies need to be performed in patients with AN to explore the link between nutritional disorders, gut microbiota and its metabolites.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health

          The colon is inhabited by a dense population of microorganisms, the so-called “gut microbiota,” able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces.

            Weight loss diets for humans that are based on a high intake of protein but low intake of fermentable carbohydrate may alter microbial activity and bacterial populations in the large intestine and thus impact on gut health. In this study, 19 healthy, obese (body mass index range, 30 to 42) volunteers were given in succession three different diets: maintenance (M) for 3 days (399 g carbohydrate/day) and then high protein/medium (164 g/day) carbohydrate (HPMC) and high protein/low (24 g/day) carbohydrate (HPLC) each for 4 weeks. Stool samples were collected at the end of each dietary regimen. Total fecal short-chain fatty acids were 114 mM, 74 mM, and 56 mM (P < 0.001) for M, HPMC, and HPLC diets, respectively, and there was a disproportionate reduction in fecal butyrate (18 mM, 9 mM, and 4 mM, respectively; P < 0.001) with decreasing carbohydrate. Major groups of fecal bacteria were monitored using nine 16S rRNA-targeted fluorescence in situ hybridization probes, relative to counts obtained with the broad probe Eub338. No significant change was seen in the relative counts of the bacteroides (Bac303) (mean, 29.6%) or the clostridial cluster XIVa (Erec482, 23.3%), cluster IX (Prop853, 9.3%), or cluster IV (Fprau645, 11.6%; Rbro730 plus Rfla729, 9.3%) groups. In contrast, the Roseburia spp. and Eubacterium rectale subgroup of cluster XIVa (11%, 8%, and 3% for M, HPMC, and HPLC, respectively; P < 0.001) and bifidobacteria (4%, 2.1%, and 1.9%, respectively; P = 0.026) decreased as carbohydrate intake decreased. The abundance of butyrate-producing bacteria related to Roseburia spp. and E. rectale correlated well with the decline in fecal butyrate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theory and validity of indirect calorimetry during net lipid synthesis.

              A critical examination is made of the validity of indirect calorimetry when the nonprotein respiratory quotient is greater than 1. The different published stoichiometries for lipogenesis from glucose are excluded as a source of uncertainty in the interpretation of gaseous exchange measurements. The validity of indirect calorimetry is proved independently by an algebraic approach which, in contrast to previous attempts, makes minimal assumptions about stoichiometries. Although equations relating the respiratory quotient to the heat equivalent of oxygen are found valid, there is uncertainty in using these equations to predict accurately carbohydrate utilization and fat oxidized or synthesized. Reference tables interrelating respiratory data, the heat equivalent of oxygen, and net fuel utilization or synthesis for specified fuels are provided. A suggested framework for calculating energy expenditure in terms of ATP gain is given as an appendix.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                29 November 2018
                2018
                : 5
                : 119
                Affiliations
                [1] 1Department of Clinical Medicine and Surgery, Federico II University Hospital , Naples, Italy
                [2] 2Interuniversity Centre for Obesity and Eating Disorders (CISRO), Federico II University Hospital , Naples, Italy
                Author notes

                Edited by: Maurizio Muscaritoli, Sapienza Università di Roma, Italy

                Reviewed by: Mustapha Diaf, University of Sidi-Bel-Abbès, Algeria; Sirish Chandra Bennuri, University of Arkansas for Medical Sciences, United States

                *Correspondence: Iolanda Cioffi iolanda.cioffi@ 123456unina.it

                This article was submitted to Clinical Nutrition, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2018.00119
                6281687
                30555830
                e5ea47d5-fa58-4bc4-ba04-1c4421617a80
                Copyright © Speranza, Cioffi, Santarpia, Del Piano, De Caprio, Naccarato, Marra, De Filippo, Contaldo and Pasanisi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 April 2018
                : 15 November 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 23, Pages: 4, Words: 2946
                Categories
                Nutrition
                Original Research

                anorexia nervosa,scfa,malnutrition,energy expenditure,diet
                anorexia nervosa, scfa, malnutrition, energy expenditure, diet

                Comments

                Comment on this article