4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Natural Compounds against Neurodegenerative Diseases: Molecular Characterization of the Interaction of Catechins from Green Tea with Aβ1–42, PrP106–126, and Ataxin‐3 Oligomers

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers.

          The accumulation of beta-sheet-rich amyloid fibrils or aggregates is a complex, multistep process that is associated with cellular toxicity in a number of human protein misfolding disorders, including Parkinson's and Alzheimer's diseases. It involves the formation of various transient and intransient, on- and off-pathway aggregate species, whose structure, size and cellular toxicity are largely unclear. Here we demonstrate redirection of amyloid fibril formation through the action of a small molecule, resulting in off-pathway, highly stable oligomers. The polyphenol (-)-epigallocatechin gallate efficiently inhibits the fibrillogenesis of both alpha-synuclein and amyloid-beta by directly binding to the natively unfolded polypeptides and preventing their conversion into toxic, on-pathway aggregation intermediates. Instead of beta-sheet-rich amyloid, the formation of unstructured, nontoxic alpha-synuclein and amyloid-beta oligomers of a new type is promoted, suggesting a generic effect on aggregation pathways in neurodegenerative diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity.

            Protein misfolding and formation of beta-sheet-rich amyloid fibrils or aggregates is related to cellular toxicity and decay in various human disorders including Alzheimer's and Parkinson's disease. Recently, we demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibits alpha-synuclein and amyloid-beta fibrillogenesis. It associates with natively unfolded polypeptides and promotes the self-assembly of unstructured oligomers of a new type. Whether EGCG disassembles preformed amyloid fibrils, however, remained unclear. Here, we show that EGCG has the ability to convert large, mature alpha-synuclein and amyloid-beta fibrils into smaller, amorphous protein aggregates that are nontoxic to mammalian cells. Mechanistic studies revealed that the compound directly binds to beta-sheet-rich aggregates and mediates the conformational change without their disassembly into monomers or small diffusible oligomers. These findings suggest that EGCG is a potent remodeling agent of mature amyloid fibrils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurotoxicity of a prion protein fragment.

              The cellular prion protein (PrPC) is a sialoglycoprotein of M(r) 33-35K that is expressed predominantly in neurons. In transmissible and genetic neurodegenerative disorders such as scrapie of sheep, spongiform encephalopathy of cattle and Creutzfeldt-Jakob or Gerstmann-Sträussler-Scheinker diseases of humans, PrPC is converted into an altered form (termed PrPSc) which is distinguishable from its normal homologue by its relative resistance to protease digestion. PrPSc accumulates in the central nervous system of affected individuals, and its protease-resistant core aggregates extracellularly into amyloid fibrils. The process is accompanied by nerve cell loss, whose pathogenesis and molecular basis are not understood. We report here that neuronal death results from chronic exposure of primary rat hippocampal cultures to micromolar concentrations of a peptide corresponding to residues 106-126 of the amino-acid sequence deduced from human PrP complementary DNA. DNA fragmentation of degenerating neurons indicates that cell death occurred by apoptosis. The PrP peptide 106-126 has a high intrinsic ability to polymerize into amyloid-like fibrils in vitro. These findings indicate that cerebral accumulation of PrPSc and its degradation products may play a role in the nerve cell degeneration that occurs in prion-related encephalopathies.
                Bookmark

                Author and article information

                Journal
                Chemistry – A European Journal
                Chem. Eur. J.
                Wiley
                0947-6539
                1521-3765
                September 03 2014
                October 13 2014
                September 2014
                October 13 2014
                : 20
                : 42
                : 13793-13800
                Affiliations
                [1 ]Department of Biotechnology and Biosciences University of Milano‐Bicocca, P.zza della Scienza, 2, 20126, Milano (Italy), Fax: (+39) 02‐6448‐3565
                [2 ]Department Biochemistry and Molecular Pharmacology, IRCCS‐Istituto di Ricerche Farmacologiche “Mario Negri”, Via Giuseppe La Masa, 19 20156 Milano (Italy)
                [3 ]Department of Statistics and Quantitative Methods, University of Milano‐Bicocca, Via Bicocca degli Arcimboldi, 8, 20126, Milano (Italy)
                Article
                10.1002/chem.201403188
                25179684
                e5ee6be6-d512-48c6-9c71-e9909e5ee76b
                © 2014

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article