11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trichinella britovi muscle larvae and adult worms: stage-specific and common antigens detected by two-dimensional gel electrophoresis-based immunoblotting

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Trichinella britovi is the second most common species of Trichinella that may affect human health. As an early diagnosis of trichinellosis is crucial for effective treatment, it is important to identify sensitive, specific and common antigens of adult T. britovi worms and muscle larvae. The present study was undertaken to uncover the stage-specific and common proteins of T. britovi that may be used in specific diagnostics.

          Methods

          Somatic extracts obtained from two developmental stages, muscle larvae (ML) and adult worms (Ad), were separated using two-dimensional gel electrophoresis (2-DE) coupled with immunoblot analysis. The positively-visualized protein spots specific for each stage were identified through liquid chromatography-tandem mass spectrometry (LC-LC/MS).

          Results

          A total of 272 spots were detected in the proteome of T. britovi adult worms (Ad) and 261 in the muscle larvae (ML). The somatic extracts from Ad and ML were specifically recognized by T. britovi-infected swine sera at 10 days post infection (dpi) and 60 dpi, with a total of 70 prominent protein spots. According to immunoblotting patterns and LC-MS/MS results, the immunogenic spots recognized by different pig T. britovi-infected sera were divided into three groups for the two developmental stages: adult stage-specific proteins, muscle larvae stage-specific proteins, and proteins common to both stages. Forty-five Ad proteins (29 Ad-specific and 16 common) and thirteen ML proteins (nine ML-specific and four common) cross-reacted with sera at 10 dpi. Many of the proteins identified in Ad (myosin-4, myosin light chain kinase, paramyosin, intermediate filament protein B, actin-depolymerizing factor 1 and calreticulin) are involved in structural and motor activity. Among the most abundant proteins identified in ML were 14-3-3 protein zeta, actin-5C, ATP synthase subunit d, deoxyribonuclease-2-alpha, poly-cysteine and histide-tailed protein, enolase, V-type proton ATPase catalytic and serine protease 30. Heat-shock protein, intermediate filament protein ifa-1 and intermediate filament protein B were identified in both proteomes.

          Conclusions

          To our knowledge, this study represents the first immunoproteomic identification of the antigenic proteins of adult worms and muscle larvae of T. britovi. Our results provide a valuable basis for the development of diagnostic methods. The identification of common components for the two developmental stages of T. britovi may be useful in the preparation of parasitic antigens in recombinant forms for diagnostic use.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The evolution of compositionally and functionally distinct actin filaments.

          The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparative proteomic analysis of surface proteins of Trichinella spiralis muscle larvae and intestinal infective larvae.

            The critical step for Trichinella spiralis infection is that muscle larvae (ML) are activated to intestinal infective larvae (IIL) and invade intestinal epithelium to further develop. The IIL is its first invasive stage, surface proteins are directly exposed to host environment and are crucial for larval invasion and development. In this study, shotgun LC-MS/MS was used to analyze surface protein profiles of ML and IIL. Totally, 41 proteins common to both larvae, and 85 ML biased and 113 IIL biased proteins. Some proteins (e.g., putative scavenger receptor cysteine-rich domain protein and putative onchocystatin) were involved in host-parasite interactions. Gene ontology analysis revealed that proteins involved in generation of precursor metabolites and energy; and nucleobase, nucleoside, nucleotide and nucleic acid metabolic process were enriched in IIL at level 4. Some IIL biased proteins might play important role in larval invasion and development. qPCR results confirmed the high expression of some genes in IIL. Our study provides new insights into larval invasion, host-Trichinella interaction and for screening vaccine candidate antigens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool

              Background Trichinellosis is a serious zoonositc parasitosis worldwide. Because its clinical manifestations aren’t specific, the diagnosis of trichinellosis is not easy to be made. Trichinella spiralis muscle larva (ML) excretory–secretory (ES) antigens are the most widely applied diagnostic antigens for human trichinellosis, but the major drawback of the ES antigens for assaying anti-Trichinella antibodies is the false negative in the early Trichinella infection period. The aim of this study was to characterize the T. spiralis putative serine protease (TsSP) and to investigate its potential use for diagnosis of trichinellosis. Methodology/Principal findings The full-length TsSP sequence was cloned and expressed, and recombinant TsSP (rTsSP) was purified by Ni-NTA-Sefinose Column. On Western blotting analysis the rTsSP was recognized by T. spiralis-infected mouse serum, and the natural TsSP was identified in T. spiralis ML crude and ES antigens by using anti-rTsSP serum. Expression of TsSP was detected at various T. spiralis developmental stages (newborn larvae, muscle larvae, intestinal infective larvae and adult worms). Immunolocalization identified the TsSP principally in cuticles and stichosomes of the nematode. The sensitivity of rTsSP-ELISA and ES-ELISA was 98.11% (52/53) and 88.68% (47/53) respectively (P > 0.05) when the sera from trichinellosis patients were examined. However, while twenty-one serum samples of trichinellosis patients’ sera at 19 days post-infection (dpi) were tested, the sensitivity (95.24%) of rTsSP-ELISA was distinctly higher than 71.43% of ES-ELISA (P < 0.05). The specificity (99.53%) of rTsSP-ELISA was remarkably higher than 91.98% of ES-ELISA (P < 0.01). Only one out of 20 serum samples of cysticercosis patients cross-reacted with the rTsSP. Specific anti-Trichinella IgG in infected mice was first detected by rTsSP-ELISA as soon as 7 dpi and antibody positive rate reached 100% on 10 dpi, whereas the ES-ELISA did not permit detection of 100% of infected mice before 16 dpi. Conclusions The rTsSP is a potential early diagnostic antigen for human trichinellosis.
                Bookmark

                Author and article information

                Contributors
                sylwia.grzelak@twarda.pan.pl
                moskwa@twarda.pan.pl
                jbien@twarda.pan.pl
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                12 November 2018
                12 November 2018
                2018
                : 11
                : 584
                Affiliations
                ISNI 0000 0001 0741 5389, GRID grid.460430.5, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, ; Twarda 51/55, 00-818 Warsaw, Poland
                Article
                3177
                10.1186/s13071-018-3177-x
                6233509
                30419953
                e5f42713-d69d-4e94-992a-89154b9ae5a6
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 July 2018
                : 28 October 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: UMO-2015/18/E/NZ6/00502
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Parasitology
                trichinella britovi,adult worm,muscle larvae,2-de,mass spectrometry,immunoblotting
                Parasitology
                trichinella britovi, adult worm, muscle larvae, 2-de, mass spectrometry, immunoblotting

                Comments

                Comment on this article