62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A yeast MAPK cascade regulates pexophagy but not other autophagy pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The S. cerevisiae Slt2p MAPK cascade picks out peroxisomes for autophagy-mediated degradation (pexophagy) but is not involved in turnover of other cellular components.

          Abstract

          Autophagy is important for many cellular processes such as innate immunity, neurodegeneration, aging, and cancer. Although the signaling events triggering autophagy have been studied, little is known regarding the signaling mechanisms by which autophagy is redirected to achieve selective removal of cellular components. We have used the degradation of a peroxisomal marker to investigate the role of protein kinases in selective autophagy of peroxisomes (pexophagy) in Saccharomyces cerevisiae. We show that the Slt2p mitogen-activated protein kinase (MAPK) and several upstream components of its signal transduction pathway are necessary for pexophagy but not for pexophagosome formation or other nonselective and selective forms of autophagy. Other extracellular signals that activate this pathway do not trigger pexophagy on their own, suggesting that this MAPK cascade is necessary but not sufficient to trigger pexophagy. We propose that pexophagy requires the simultaneous activation of this MAPK pathway and a hexose-sensing mechanism acting through protein kinase A and cyclic adenosine monophosphate.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamics and diversity in autophagy mechanisms: lessons from yeast.

          Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell wall integrity signaling in Saccharomyces cerevisiae.

            The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small G-protein Rho1 is principally responsible for orchestrating changes to the cell wall periodically through the cell cycle and in response to various forms of cell wall stress. This signaling pathway acts through direct control of wall biosynthetic enzymes, transcriptional regulation of cell wall-related genes, and polarization of the actin cytoskeleton. However, additional signaling pathways interface both with the cell wall integrity signaling pathway and with the actin cytoskeleton to coordinate polarized secretion with cell wall expansion. These include Ca(2+) signaling, phosphatidylinositide signaling at the plasma membrane, sphingoid base signaling through the Pkh1 and -2 protein kinases, Tor kinase signaling, and pathways controlled by the Rho3, Rho4, and Cdc42 G-proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease.

              Eukaryotic cells use autophagy and the ubiquitin-proteasome system (UPS) as their major protein degradation pathways. Whereas the UPS is required for the rapid degradation of proteins when fast adaptation is needed, autophagy pathways selectively remove protein aggregates and damaged or excess organelles. However, little is known about the targets and mechanisms that provide specificity to this process. Here we show that mature ribosomes are rapidly degraded by autophagy upon nutrient starvation in Saccharomyces cerevisiae. Surprisingly, this degradation not only occurs by a non-selective mechanism, but also involves a novel type of selective autophagy, which we term 'ribophagy'. A genetic screen revealed that selective degradation of ribosomes requires catalytic activity of the Ubp3p/Bre5p ubiquitin protease. Although ubp3Delta and bre5Delta cells strongly accumulate 60S ribosomal particles upon starvation, they are proficient in starvation sensing and in general trafficking and autophagy pathways. Moreover, ubiquitination of several ribosomal subunits and/or ribosome-associated proteins was specifically enriched in ubp3Delta cells, suggesting that the regulation of ribophagy by ubiquitination may be direct. Interestingly, ubp3Delta cells are sensitive to rapamycin and nutrient starvation, implying that selective degradation of ribosomes is functionally important in vivo. Taken together, our results suggest a link between ubiquitination and the regulated degradation of mature ribosomes by autophagy.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                19 April 2010
                : 189
                : 2
                : 303-310
                Affiliations
                Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
                Author notes
                Correspondence to Suresh Subramani: ssubramani@ 123456ucsd.edu
                Article
                200909154
                10.1083/jcb.200909154
                2856896
                20385774
                e6008b90-9fd0-4419-8ecf-84b4ea1f79bd
                © 2010 Manjithaya et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 28 September 2009
                : 18 March 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article