6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca 2+-activated K +channels : Role of KCa1.1 in the vascular effect of kaempferol

      1 , 1 , 1 , 1
      British Journal of Pharmacology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Relaxation of arterial smooth muscle by calcium sparks.

          Local increases in intracellular calcium ion concentration ([Ca2+]i) resulting from activation of the ryanodine-sensitive calcium-release channel in the sarcoplasmic reticulum (SR) of smooth muscle cause arterial dilation. Ryanodine-sensitive, spontaneous local increases in [Ca2+]i (Ca2+ sparks) from the SR were observed just under the surface membrane of single smooth muscle cells from myogenic cerebral arteries. Ryanodine and thapsigargin inhibited Ca2+ sparks and Ca(2+)-dependent potassium (KCa) currents, suggesting that Ca2+ sparks activate KCa channels. Furthermore, KCa channels activated by Ca2+ sparks appeared to hyperpolarize and dilate pressurized myogenic arteries because ryanodine and thapsigargin depolarized and constricted these arteries to an extent similar to that produced by blockers of KCa channels. Ca2+ sparks indirectly cause vasodilation through activation of KCa channels, but have little direct effect on spatially averaged [Ca2+]i, which regulates contraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological roles and properties of potassium channels in arterial smooth muscle.

            This review examines the properties and roles of the four types of K+ channels that have been identified in the cell membrane of arterial smooth muscle cells. 1) Voltage-dependent K+ (KV) channels increase their activity with membrane depolarization and are important regulators of smooth muscle membrane potential in response to depolarizing stimuli. 2) Ca(2+)-activated K+ (KCa) channels respond to changes in intracellular Ca2+ to regulate membrane potential and play an important role in the control of myogenic tone in small arteries. 3) Inward rectifier K+ (KIR) channels regulate membrane potential in smooth muscle cells from several types of resistance arteries and may be responsible for external K(+)-induced dilations. 4) ATP-sensitive K+ (KATP) channels respond to changes in cellular metabolism and are targets of a variety of vasodilating stimuli. The main conclusions of this review are: 1) regulation of arterial smooth muscle membrane potential through activation or inhibition of K+ channel activity provides an important mechanism to dilate or constrict arteries; 2) KV, KCa, KIR, and KATP channels serve unique functions in the regulation of arterial smooth muscle membrane potential; and 3) K+ channels integrate a variety of vasoactive signals to dilate or constrict arteries through regulation of the membrane potential in arterial smooth muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture).

              Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.
                Bookmark

                Author and article information

                Journal
                British Journal of Pharmacology
                Br J Pharmacol
                Wiley
                00071188
                June 2015
                June 2015
                March 27 2015
                : 172
                : 12
                : 3003-3014
                Affiliations
                [1 ]Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Hong Kong China
                Article
                10.1111/bph.13108
                e6085d02-c969-4bca-ab9d-1d395676caec
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article