30
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Draft Genome Sequence of Bacillus pumilus ku-bf1 Isolated from the Gut Contents of Wood Boring Mesomorphus sp.

      data-paper

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction The threat of climate change has intensified efforts toward the development of safer alternatives to depleting fossil fuels (Cox et al., 2000). Lignocellulosic bioethanol is considered to be a viable and environmentally friendly alternative to fossil fuels. Though lignocellulosic biomass is available in massive quantities and is renewable (Dillon and Dillon, 2003; Lynd et al., 2008; Pauly and Keegstra, 2008; Kricka et al., 2015), the presence of certain barriers makes lignocellulosic bioethanol expensive. Discovery of proteins with novel specificities is necessary to break these barriers and make lignocellulosic bioethanol economically viable (Horn et al., 2012; Ulaganathan et al., 2015). Cellulolytic bacteria isolated from various environments have been explored for proteins of potential use in lignocellulosic bioethanol production (Badger, 2002; Wang et al., 2012; Pinheiro et al., 2015). Bacteria belonging to the genera Bacillus, Bacteroides, Butyrivibrio, Cellulosimicrobium, Citrobacter, Clostridium, Devosia, Dyadobacter, Ensifer, Kaistia, Labrys, Methanobrevibacter, Microbacterium, Ochrobactrum, Paracoccus, Pseudomonas, Rhizobium, Ruminococcus, Shinella, Siphonobacter, Stenotrophomonas, Trichonympha, and Variovorax, were found to be cellulolytic (Saxena et al., 1993; Schwarz, 2001; Gupta et al., 2012; Huang et al., 2012; Yanga et al., 2014). Bacillus pumilus strains are known to produce cellulase enzyme up to a maximum of 11.4 mg/g of cell dry mass (Suzuki and Kaneko, 1976; Kotchoni and Shonukan, 2002; Ariffin et al., 2006). The cellulase enzyme produced by B. pumilus strain EB3 has been found to be superior to fungal cellulases due to its higher optimum pH and temperature (Ariffin et al., 2006). Further it has been shown that the B. pumilus cellulase enzyme could be mutated to remove the catabolite repression (Kotchoni et al., 2003). We have recently isolated bacterial strains from the gut contents of the wood boring Mesomorphus sp. These isolates were screened for cellulolytic and xylose isomerase activities and the isolate ku-bf1 which exhibited maximum cellulolytic and xylose isomerase activities was identified as B. pumilus by 16S rRNA sequencing. The whole genome of this strain has been sequenced. The dataset has been submitted to NCBI and is reported here. Materials and methods Isolation of the bacterial strain Bacterial isolates were made by plating the gut contents of wood boring Mesomorphus sp. on YEP-Agar medium (Yeast extract, peptone and agar). After incubation for 24 h at 25°C, the growing bacterial colonies were sub-cultured. These colonies were tested for cellulolytic and xylose isomerase activities on CMC-Agar medium (NH4H2PO4—1 g/L; KCl—0.2 g/L; MgSO4.7H2 O—1 g/L; Yeast Extract—1 g/L; Carboxymethyl Cellulose—26 g/L; Agar—3 g/L) and YEP-Xylose-Agar medium, respectively (Sapunova et al., 2004; Ponnambalam et al., 2011). The bacterial isolate (ku-bf1) which produced maximum clearance zone in both plate assays was selected for this work. Genomic DNA isolation, library preparation and sequencing Genomic DNA was isolated using a modified Cetyltrimethyl ammonium bromide (CTAB) method (Murray and Thompson, 1980; Zhou et al., 1996). The quality of isolated DNA was checked using a Qubit fluorimeter (Thermo Fisher) and 50 ng of pure genomic DNA was used for library preparation. Genomic DNA was fragmented and adapter-tagged using a Sure Select QXTKit (Agilent Technologies). Fragmented DNA was cleaned using HighPrepBeads (MagBio Genomics). Cleaned and adapter tagged fragments were amplified and indexed. The prepared library was quantified using a Qubit Fluorimeter. The quality of the library was checked by running an aliquot (1 ul) on a High Sensitivity Bioanalyzer DNA Chip (Agilent Technologies). The library showed a size range of ~300–1000 bp in the Bioanalyzer profile. The effective insert size of the library was in the range of ~180–880 bp, Whole genome sequencing was carried out with an IluminaMiseq system (Illumina, San Diego, CA) at Genotypic Technology (P) Ltd., Bangalore Preprocessing and genome assembly The quality of sequence reads was analyzed using the FastQC tool (Andrews, 2010). Reads were trimmed off adapters using the Fastx-toolkit (Gordon and Hannon, 2010). Reference genome assembly was carried out using the Bowtie2 tool (ver. 2.2.4) (Langmead and Salzberg, 2012). The genome of B. pumilus W3, downloaded from Genbank, was used as the reference genome. Reference based assembly involved indexing of the reference genome and alignment of reads to the reference and creation of a SAM file using SAMtools (ver 0.1.18) (Li et al., 2009). The SAM file was converted to a binary BAM file, sorted and indexed by using the “view,” “sort” and “index” functions of SAMtools, respectively. The BAM file was checked using the BamView tool and used for variation report generation (Carver et al., 2010). The consensus sequence was generated using SAMtools. The variation report in “bcf” format was converted into a “vcf” file using BCFTools. Results Whole genome sequencing of B. pumilus ku-bf1 Sequencing the genome of B. pumilus ku-bf1 produced a total of 3,841,334 paired-end reads (150 bp). After removing adapters and low quality reads, the reads were used for reference based genome assembly. These reads were assembled on to the reference genome (B. pumilus W3) using Bowtie-2 (Langmead and Salzberg, 2012). Over 90% of the reads were aligned to the reference genome and the coverage was estimated to be >100x. The BAM file was used for generating the variation report using SAMtools with a mapping quality of >30 and read depth of >20 as cutoffs. The consensus sequence generated was 37,45,118 bp long. NCBI Prokaryotic genome annotation pipeline predicted a total of 3430 protein coding genes, 94 RNA coding genes and 56 pseudogenes. The RNA coding genes predicted include seventy tRNA genes, six 5S rRNA genes, seven 16S rRNA genes, six 23S rRNA genes and five non-coding RNA genes (Table 1). Table 1 B. pumilus ku-bf1 genome characteristics and resources. S. No Name Genome characteristics and Resources 1 NCBI Bioproject ID PRJNA298672 2 NCBI Biosample ID SAMN04230746 3 NCBI Genome Accession Number CP014165 4 Sequence type Illumina Miseq 5 Total number of Reads 3,841,334 6 Read length 150 7 Overall coverage >100x 8 Mapped reads 90 % 9 Estimated genome size 3,745,118 bp 10 GC content 41.64% 11 Protein coding genes 3430 12 tRNA coding genes 70 13 rRNA coding genes 19 14 ncRNA coding genes 5 15 Pseudogenes 56 Direct link to deposited data and information to users The dataset submitted to NCBI include the assembled consensus sequence of B. pumilus ku-bf1 in Fasta format and the Bam file generated by reference based assembly. The genome sequence can be accessed at NCBI using the accession number CP014165. Users can download and use the data freely for research purpose only with acknowledgment to us and quoting this paper as reference to the data. Author contributions Work was planned by KU and executed jointly by KU and JB. SR was associated with isolation of the bacterial strain. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid isolation of high molecular weight plant DNA.

          A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The gut bacteria of insects: nonpathogenic interactions.

            The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Novel enzymes for the degradation of cellulose

              The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 June 2016
                2016
                : 7
                : 1037
                Affiliations
                Center for Plant Molecular Biology, Osmania University Hyderabad, India
                Author notes

                Edited by: Vijai Kumar Gupta, National University of Ireland, Galway, Ireland

                Reviewed by: Sean Cameron Booth, University of Calgary, Canada; Joseph Selvin, Pondicherry University, India

                *Correspondence: Kandasamy Ulaganathan kulaganathan123@ 123456gmail.com

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.01037
                4927586
                27446065
                e6094d2c-07ee-459b-b60c-331d59b8fb8b
                Copyright © 2016 Balsingh, Radhakrishna and Ulaganathan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 February 2016
                : 20 June 2016
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 28, Pages: 3, Words: 2124
                Funding
                Funded by: University Grants Commission 10.13039/501100001501
                Award ID: Osmania-UPE Programme
                Categories
                Microbiology
                Data Report

                Microbiology & Virology
                bacillus pumilus,genome sequencing,cellulolytic bacteria,xylose isomerase,bioethanol,mesomorphus

                Comments

                Comment on this article