3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      AZD9291 promotes autophagy and inhibits PI3K/Akt pathway in NSCLC cancer cells

      1 , 2 , 2 , 2 , 1
      Journal of Cellular Biochemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AZD9291, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is highly selective against EGFR T790M-mutant non-small cell lung cancer (NSCLC). On investigating the growth inhibitory effects of AZD9291 on NSCLC and the underlying mechanism, we found that AZD9291 can trigger autophagy-mediated cell death in both A549 and H1975 cells by increasing the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3) and decreasing the expression of p62. In the presence of the autophagy inhibitor chloroquine, the AZD9291-induced increase in LC3 level was further augmented. AZD9291 decreased the levels of phosphoinositide-3 kinase (PI3K), protein kinase B (Akt), and phosphorylated Akt. AZD9291-induced cell death was enhanced by Akt knockdown, and the levels of both EGFR and phosphorylated EGFR were decreased by AZD9291. AZD9291 was also found to significantly suppress the tumor growth in H1975 xenograft nude mice. Thus, AZD9291 was found to induce autophagy, decrease in EGFR levels, and show a strong inhibitory effect on NSCLC both in vitro and in vivo. Furthermore, the PI3K/Akt signaling pathway was found to play a critical role in AZD9291-induced cell death.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers.

          Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P < .001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity.

            Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease.

              EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an update on new controversies and conclusions regarding the disease. This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on epidermal growth factor receptor tyrosine kinase inhibitor resistance. The discovery of EGFR mutations has altered the ways in which we consider and treat non-small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations are expected to live longer than 2 years, more than double the previous survival rates for lung cancer. The information presented in this review can guide practitioners and help them inform their patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease.
                Bookmark

                Author and article information

                Journal
                Journal of Cellular Biochemistry
                J Cell Biochem
                Wiley
                0730-2312
                1097-4644
                August 30 2018
                January 2019
                August 26 2018
                January 2019
                : 120
                : 1
                : 756-767
                Affiliations
                [1 ]The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing UniversityNanjing China
                [2 ]Faculty of Pharmacy, Bengbu Medical CollegeBengbu Anhui China
                Article
                10.1002/jcb.27434
                30145802
                e61699e9-c9d8-4061-8b7f-a0cc5e7f3375
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article